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Optical probing of neuronal ensemble activity
Benjamin F Grewe and Fritjof Helmchen
Neural computations are implemented in densely

interconnected networks of excitable neurons as temporal

sequences of coactive neuronal ensembles. Ensemble activity

is produced by the interaction of external stimuli with internal

states but has been difficult to directly study in the past.

Currently, high-resolution optical imaging techniques are

emerging as powerful tools to investigate neuronal ensembles

in living animals and to characterize their spatiotemporal

properties. Here we review recent advances of two-photon

calcium imaging and highlight ongoing technical improvements

as well as emerging applications. Significant progress has been

made in the extent and speed of imaging and in the adaptation

of imaging techniques to awake animals. These advances

facilitate studies of the functional organization of local neural

networks, their experience-dependent reconfiguration, and

their functional impairment in diseases. Optical probing of

neuronal ensemble dynamics in vivo thus promises to reveal

fundamental principles of neural circuit function and

dysfunction.
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Introduction
Animal behavior emerges from neural computations imple-

mented across spatial scales from the microscopic level of

synapses to the macrosopic level of interconnected brain

areas. At the intermediate ‘mesoscopic’ level neural infor-

mation processing occurs in complex microcircuits contain-

ing thousands to tens of thousands of excitatory and

inhibitory neurons [1]. The dynamic organization of a local

population with n neurons can be described by the

temporal evolution of the n-dimensional ‘state vector’,

which contains ‘ones’ for all active, action potential-gen-

erating cells, and ‘zeros’ for all inactive cells [2]. For distinct

sensory inputs or behaviors the trajectory of the state vector

passes through particular subvolumes of the high-dimen-
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sional state space, corresponding to specific sequences of

coactive ensembles of neurons that are engaged during

particular computational tasks. Additional ‘hidden states’

(reflecting for example subthreshold membrane potential

or second messenger concentrations) dynamically change

as well and may significantly influence network dynamics

[2]. To understand the principles of microcircuit operation

we need to identify coactive ensembles within local

neuronal populations and reveal their dynamic properties

when they are performing real tasks.

Ideally, one would like to record activity in large neuronal

populations with high temporal resolution and during

behavior. While large-scale electrical recordings can

measure population spiking activity in behaving animals

[3] they sample local networks only sparsely and are limited

in revealing cell types or spatial relationships. As alternative

approach optical imaging techniques are rapidly develop-

ing [4,5]. In particular, two-photon microscopy of fluor-

escent indicators provides new opportunities for measuring

the spatiotemporal dynamics of well-identified neuronal

populations with single-cell resolution in living animals.

Here we review progress in the field of in vivo neuronal

population imaging over the past three years. For in vivo
imaging of glial function we refer to another recent review

[6]. Using primarily examples from the mammalian brain

we report on advances regarding imaging speed, measure-

ments from 3D volumes, and imaging in awake animals.

We highlight recent applications that demonstrate the

newly emerging opportunities and discuss remaining

future challenges.

Visualizing neuronal ensembles with calcium
indicators
Calcium imaging is the currently prevailing optical method

for probing neuronal ensembles in vivo [7–9]. Fluorescent

calcium indicators report intracellular calcium concen-

tration changes evoked by action potentials and thus infer

neuronal spiking indirectly; nonetheless they are advan-

tageous over voltage-sensitive dyes owing to their high

dynamic range, good signal-to-noise ratio (SNR), versatile

labeling options, and low phototoxicity. A tight correlation

between spiking activity and somatic calcium transients

has been confirmed by many studies and single action

potentials are detectable under favorable conditions [10–
13]. During trains of action potentials, individual calcium

signals summate so that fluorescence transients reflect

changes in spike frequency [14,15].

New in vivo labeling techniques have triggered numerous

calcium imaging studies, mostly employing two-photon
www.sciencedirect.com
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microscopy owing to its superior depth penetration [16]. A

highly successful approach has been bolus loading of cell

populations in specific brain areas with traditional synthetic

indicators, for example, Oregon Green BAPTA-1 (OGB-1),

Fluo-4, or Rhod-2 [17,18]. Recent work includes studies on

the zebrafish olfactory system [19,20,21��], on the optic

tectum in zebrafish larvae [22�,23], on visual cortex of cats

[24��], ferrets [25], and rodents [12,26�,27], and on rodent

somatosensory cortex [11,13,28�], motor cortex [29��] and
Figure 1

Examples of in vivo two-photon calcium imaging of neuronal ensembles from

A cell population in cat visual cortex about 200 mm below the pia labeled w

calcium transients in response to monocular and binocular stimuli (lower left)

Colored maps of preferred ocular dominance and binocular disparity phase a

target areas (Vv and Dp) of zebrafish olfactory bulb, bulk-loaded with Rhod-2

Dp (lower row) upon odor stimulation with lysine (Lys) or valine (Val). Dots in

reproducible (Lys versus Lys repeat). Overlap between response patterns evo

course of calcium signals in the somata depicted by arrows. (a) and (b) ada
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cerebellum [30–32,33��]. Figure 1 illustrates two examples

of how population calcium imaging is utilized to reveal

sensory coding by neuronal ensembles. The first example

shows visually evoked neuronal calcium transients in the

binocular region of cat visual cortex [24��]. Responses

showed variable tuning across the population with respect

to both ocular dominance (OD) and binocular disparity

(BD) and the spatial maps for OD and BD tuning

were found to have orthogonal orientation (Figure 1a).
(a) cat visual cortex [24��] and (b) the zebrafish olfactory system [21��]. (a)

ith the calcium indicator OGB-1 (upper left, scale bar 100 mm). Example

are shown for five cells in the middle column (three trials superimposed).

re shown on the right. (b) Odor responses in neuronal populations of two

as calcium indicator. Color-coded response map for Vv (upper row) and

the left images indicate positions of somata. Response maps are

ked by different stimuli is high in Vv but low in Dp. Traces show the time

pted with permission from [24��] and [21��], respectively.
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The second example shows odor-evoked activation of

neuronal ensembles in two target areas of the olfactory

bulb in zebrafish, revealing distinct transformations of odor

representation in these downstream brain areas [21��]
(Figure 1b).

Other methods for functional labeling include retrograde

uptake of dextran-conjugated dyes, which has been

extensively used to study spinal cord circuits [34–36],

electroporation [34,37,38], and particularly the use of

genetically encoded calcium indicators (GECIs), such

as members of the GCaMP, yellow cameleon, or troponin

C-based indicator families [39]. In vivo application of

GECIs has commenced in insects [40], lower vertebrates

[35,41], and mice [42,43�,44�] and can be expected to

greatly expand in the future.

Gaining speed with fast imaging techniques
In spite of the success of in vivo calcium imaging for

visualizing neuronal ensemble activity, a number of

challenges remain. One crucial issue is the limited

temporal resolution. A first strategy to improve imaging

speed is to simultaneously excite fluorescence at multiple

spots. For example, wide-field illumination, spinning-

disk confocal microscopy, or light-sheet illumination

techniques [45] together with readout by fast cameras

or photodiode arrays nowadays support frame rates of

several hundred hertz (for review see [9]). Multi-spot

excitation has also been implemented in laser-scanning

systems either by splitting the laser beam in multiple

beamlets, creating an array of laser foci [46,47], or by

creating arbitrary excitation patterns in a ‘scanless’

approach using a diffractive spatial light modulator

[48]. Disadvantages of multi-spot excitation are the

reduced laser power available per spot and strong sensi-

tivity to light scattering leading to cross talk between

imaged pixels and reduced image resolution. Con-

sequently, depth penetration is limited (<150 mm) and

applications so far have been mainly restricted to

extracted tissues and slice preparations (but see [46]).

Improving imaging speed with single-focus laser-scan-

ning techniques is more difficult because a tradeoff

between speed and the spatial extent of imaging is

necessary (the latter determining the maximum number

of simultaneously sampled neurons). While line scans

enable recordings from a few neurons at kilohertz rate,

this rate reduces to a few hertz or less when 2D movies of

larger groups of cells are taken (see Figure 1). In this case,

a useful strategy to increase acquisition speed is to restrict

fluorescence excitation to the structures of interest and

minimize background scanning. For instance, standard

laser scanning with galvanometric mirrors has been

adapted to scan arbitrary free line scans on pre-selected

subpopulations of cells [30,49,50�]. In the extreme case

galvanometers can be driven hard, near their maximum

acceleration, to rapidly move the laser focus from one area
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to another remote area where it is slowed down again to

scan a few cells [50�] (Figure 2). This approach, used in
vitro so far, should be easily adaptable for in vivo measure-

ments.

Full and deliberate restriction of scanning to the struc-

tures of interest is possible with acousto-optic deflectors

(AODs) [51]. Employing acoustic waves in two crossed

AOD crystals a laser beam can be deflected with con-

trollable angles in 2D. Owing to the rapid (a few micro-

seconds) AOD transition time between focus positions

more than 100 000 points can be addressed per second,

enabling kilohertz scan rates for arbitrary sets of pre-

selected positions [52�]. So far AOD scanning has been

applied in vitro, for example to measure action-potential-

evoked calcium transients at multiple dendritic sites in

individual cells [52�,53�,54] and in groups of neuronal

dendrites [52�] (Figure 2b). Recently, we achieved AOD-

based calcium imaging in vivo, with single action poten-

tial-evoked calcium transients resolved in groups of neo-

cortical neurons with up to 500 Hz sampling rate per cell

(Grewe et al., abstract in Soc Neurosci Abstr 2009, 484.1).

Towards 3D imaging of large neuronal
ensembles
Another goal is to expand neuronal population sampling

to three dimensions. Of course, using reproducible

stimuli, relatively slow signals can be reconstructed

throughout a volume from sequential recordings at differ-

ent focal depths [19,21��,55]. Eventually, however, com-

prehensive fast measurements in 3D will be required to

obtain a complete picture of local network dynamics on a

single-trial basis. Adding a third scan dimension does,

however, exacerbate the difficulties of imaging large

populations with high temporal resolution. Recently,

we introduced a mechanical 3D-scanning approach that

combines x/y-scan mirrors with a piezoelectric z-focusing

device [56�]. Custom 3D line-scan modes enabled in vivo
calcium measurements from several hundred neurons at

10 Hz sampling rate within a cubic volume of about

250 mm side length (Figure 3a and b). Even though

mechanical scanning is limited by the inertia of the

movable components, video-rate recordings seem

possible for small volumes. Addition of an extra imaging

stage, leaving the front objective stationary and shifting z-

scanning to a small lightweight mirror in the intermediate

optical path [57], might facilitate even faster volume

scanning (Figure 3c).

A promising alternative are special arrangements of

multiple AODs that allow high-speed inertia-free 3D

scanning [53�,58] (Figure 3d). The basic idea is to employ

chirped acoustic waves in the AODs to control beam

divergence in addition to deflection angle, resulting in

a movement of the excitation spot along the z-axis. This

approach enables random access scanning in a circum-

scribed volume but is limited to octahedron-shaped
www.sciencedirect.com
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Figure 2

Fast scanning techniques for neuronal population imaging. (a) Imaging of extended neural networks in acute hippocampal brain slices using

targeted path scanning (TPS) [50�]. Cell populations were bulk-loaded with Calcium Green-1 and scanned with standard galvanometric scan

mirrors (left). The scan path was predefined by selection of pairs of points outlining segments of interest (blue markers). Each segment was sampled

at a constant velocity, while the intervals between segments were traversed using maximal acceleration and deceleration (middle). Scan rates of

�100 Hz could be achieved in the CA1 region over extended fields of up to 1.1 mm (20� objective). A combined cell-attached voltage clamp recording

from one cell (right) shows a single action potential-evoked calcium transient during pharmacologically induced epileptiform activity (fluorescence

trace low-pass filtered at 10 Hz). (b) Optical monitoring of pyramidal cell network using random access multi-photon (RAMP) microscopy [52�].

Relatively long laser pulses (700 fs) were used on purpose to minimize focus distortions caused by dispersion of the pair of AODs (left). Layer 5

pyramidal cells in cortical slices were bolus-loaded with Fluo-5F and Calcein orange. Seven distal dendrites in layer 2/3 were selected for

measurement, colored points indicate dendritic recording sites (middle; point scan rate �1.8 kHz, 40� objective). A whole-cell recording was

performed from one of the loaded cells (right). Optically recorded dendritic calcium transients in different cells synchronized with the electrical

response during pharmacologically induced epileptiform activity in the millisecond range. (a) and (b) adapted with permission from [50�] and [52�],

respectively.
volumes [53�]. Drawbacks of AODs are dispersive effects

that need to be compensated and their relatively low

diffraction efficiency. Optimizing dispersion compen-

sation and laser beam transmission should make 3D

AOD imaging suitable for in vivo application.

Cellular imaging in behaving animals
Because neuronal ensemble activity is altered in anesthe-

tized animals it is desirable to perform population calcium

imaging in awake, behaving animals. Two main

approaches have been further explored (Figure 4). The

first strategy is to immobilize the animal or at least its head.

Using zebrafish larvae immobilized in agar [59] a recent

study demonstrated rhythmic activity in neuronal ensem-

bles in the optic tectum that outlasted repetitive condition-

ing stimuli, correlating with post-conditioning repetitions

of visuomotor behavior [22�]. Similarly, behavior-related
www.sciencedirect.com
calcium signals in neurons and glial cells were imaged in

awake head-fixed mice [29��,60] (Figure 4b). Another

study on immobilized rats compared calcium signals in

the same neurons during wakefulness and anesthesia [12].

The major advantage of the head-restraint approach is that

microscopes optimized for in vivo imaging can be

employed. Despite difficulties such as motion artifacts,

time-consuming habituation of animals, and reduced beha-

vioral repertoires, we foresee widespread application of this

approach in the near future.

The second principal method is functional imaging in

freely moving animals using fiber-optic, head-mounted

miniaturized microscopes [61] (Figure 4c). In addition to

fiber-optic bulk calcium measurements [62–64], in vivo
imaging with cellular resolution is now possible using

novel lightweight fiberscopes [32,33��,65]. In major
Current Opinion in Neurobiology 2009, 19:520–529
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Figure 3

3D laser-scanning approaches. (a) Mechanical 3D scanning. A piezoelectric focusing element allows sinusoidal movements of the objective along the

optical axis (z-axis) with a travel range of up to 400 mm and at 10 Hz rate or higher. Right panels show two options for 3D line scanning of the laser

focus, one based on opening and closing spiral patterns in the xy-plane (middle), the other realizing a user-defined 3D trajectory through pre-selected

cells within a volume [56�]. (b) New method of remote refocusing according to [57]. An extra aberration-free imaging stage is added to achieve z-

focusing by displacements of a small mirror below objective 2. This arrangement should allow for higher z-scanning rates while mechanical

interference between the objective lens and the specimen is avoided because objective 1 remains stationary. With 2-photon excitation fluorescence

photons can be collected with photomultipliers (PMTs) positioned close to objective 1. The quarter-waveplate is used to turn the beam polarization on

return by 908. BS, polarizing beam splitter; DC, dichroic mirror; TL; tube lens. (c) 3D random access scanning with AODs. Counter-propagating chirped

acoustic waves in a pair of AODs control angular deflection and laser beam divergence, which translates to an axial shift of the focus (one-dimensional

case shown). With two such pairs of AODs oriented orthogonally, 3D random access scanning is possible within an octahedron-shaped volume (right).
breakthroughs, two groups recently resolved calcium

signals in individual cells in freely moving animals. Using

a single-photon fiber-bundle fiberscope, one study

showed dendritic calcium signals in cerebellar Purkinje

cells in mice during locomotion [33��]. Another study

succeeded in resolving calcium transients in layer 2/3

neurons of visual cortex in freely moving rats using a

two-photon fiberscope [66��] (Figure 4d,e). Although

fiberscopes still suffer from lower resolution, reduced

SNR, lower penetration depth, and motion artifacts,

further technical improvements should alleviate these

problems and enable optical probing of neuronal ensem-

ble activity during natural behaviors. In the future, long-

term expression of GECIs [42,43�] will greatly facilitate

measurements in behaving animals whether immobilized

or freely moving.

Challenges for the analysis of calcium
imaging data
The tools for fully analyzing network dynamics from

calcium imaging data are still developing. A first step is
Current Opinion in Neurobiology 2009, 19:520–529
to reconstruct spike trains from the fluorescence record-

ings, which essentially is a deconvolution of the noisy

imaging data presuming elementary calcium transients.

Although individual spikes in principle are detectable

[10–13,44�,67], noise levels vary considerably, depending

on indicator dye, imaging speed, pixel dwell time and

other factors. Consequently, single-spike sensitivity is

still difficult to reach routinely and has to be verified

for each experimental setup. Any improvements in SNR,

for example through enhanced fluorescence collection

[68], will facilitate more reliable spike detection. Various

spike inference techniques are currently being explored

for extracting the best estimates of spike trains, in particu-

lar when high frequency spiking causes summation of

overlapping calcium transients [12,19,45,67,69,70,71].

Improved imaging speed will enable determination of

spike times with near-millisecond precision by fitting

calcium transient onsets [52�].

Extracting spike patterns from calcium measurements is

particularly challenging for awake recordings because
www.sciencedirect.com
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Figure 4

Two-photon calcium imaging with cellular resolution in awake animals. (a) Schematic setup for imaging in a head-restraint mouse, which moves on an

air-supported styrofoam ball. (b) Cell population in sensory cortex labeled with Calcium Green-1 [29��]. Neurons (green) were negative for the

astrocytic marker SR101 (yellow). Fluorescence traces for the neuropil and 4 out of 34 neurons after off-line motion correction (right). Running speed

and air puff stimuli are also shown. (c) Two-photon fiberscope setup that utilizes optical fibers for two-photon excitation and fluorescence detection.

Laser scanning is achieved with a miniature scanning-device inside the fiberscope headpiece. (d) Two photon ‘fiberscope’ image of a neuronal

population in rat visual cortex after neurons and astrocytes were stained with OGB-1 (green) and SR101 (yellow), respectively [66��] (d, lower image).

Fiberscope imaging was performed while animals freely explored an elevated, semi-circular ramp with three CRT monitors located at each end and at

the apex of the curve that presented fixed orientation patterns (d, upper image). (e) Example fluorescence transients (bottom) and raster plots

determined from an action potential detection algorithm (top) showing the activity in 3 neurons (denoted i, ii and iii) during � 3 min of continuous

recording (black lines indicate single action potentials, red lines doubles and green lines triples). Periods where the animal gazed at one of the three

monitors are indicated by blocks of different color (see monitor color coding scheme in d). Note large transients in neuron i in response to viewing the

same monitor multiple times (dashed boxes). (b) and (d, e) adapted with permission from [29��] and [66��], respectively.
motion artifacts can distort cellular signals. Laser scan-

ning leads to complicated artifacts because pixel values

are separated in space and time so that image distortions

cannot be reversed off-line by simple geometric trans-

formations. The chief goal is therefore to mechanically

stabilize the tissue using agar or transparent rubber

pieces, at least minimizing focal plane changes [29��].
Remaining lateral movements can then be corrected

offline using for example a Hidden–Markov model

[29��] or a Lucas–Kanade image registration algorithm

[72]. In the future online adjustment of scan signals might

enable automatic stabilization of optical recordings.

Another important challenge is to discriminate different

cell types, especially subnetworks of inhibitory inter-

neurons to investigate how network activity is delicately
www.sciencedirect.com
balanced under various conditions [1]. Subtypes of cells

may be identified in vivo using specific fluorescent mar-

kers, for example, genetically targeted GFP expression

[21��,73�,74], or post mortem via histological analysis.

Because calcium handling in some GABAergic neurons

differs from excitatory neurons, the relationship between

action potentials and evoked calcium transients will need

to be assessed independently.

Once spike trains have been reconstructed from fluor-

escence recordings, they can be analyzed analogous to

electrical recordings. For example, cross-correlation

analysis of cellular responses can help to identify neuronal

subensembles [11,12,21��]. Furthermore, it should be

possible to analyze the temporal dynamics of the network

state vector, in particular to what degree state vector
Current Opinion in Neurobiology 2009, 19:520–529



526 New technologies
trajectories differ for distinct computational tasks. For

visualization of high-dimensional network dynamics

dimensionality reduction methods such as principal com-

ponent analysis or locally linear embedding can be used

[3,75]. These analysis techniques will become increas-

ingly important with improved imaging speed and

increased size of populations sampled.

Future directions
The advances summarized above create new opportu-

nities for the investigation of neuronal ensembles in vivo.

Experience-dependent reconfiguration of neural net-

works is thought to be a central mechanism of learning

and plasticity. With the novel methods one can now

dissect functional changes in neuronal circuits during

development or following plasticity-inducing protocols.

For example, in mouse visual cortex the fraction of

neurons contributing to spontaneous activity was found

to decrease during postnatal development [27]; in

addition population calcium imaging revealed a switch

from highly synchronized to more desynchronized states

in mouse cortex over the first postnatal weeks [27,76]; in

ferrets, early training with moving stimuli directly after

eye opening accelerated the emergence of direction-se-

lective cells in the visual cortex [25]; and monocular

deprivations in mice caused changes of eye-specific

responsiveness in neuronal populations [26�]. Micro-

scopes with improved imaging speed might enable stu-

dies of plasticity effects that depend on millisecond-

precise relative timing of neural spikes. Optical studies

of network reconfiguration are likely to expand as soon as

repeated functional imaging of the same network

becomes routinely possible, for example through long-

term expression of GECIs using transgenic approaches

[40–42], viral delivery [44�], or in utero electroporation

[43�]. A first study demonstrated chronic imaging of the

same neurons in mouse cortex over days and weeks [43�].

A number of studies have started to use in vivo population

calcium imaging for investigating network dysfunctions

in mouse models of brain diseases. For example, follow-

ing an ischemic damage in somatosensory cortex the limb

selectivity of calcium signals in individual neurons was

first reduced while responses became more selective for a

preferred limb at later stages [28�]. In a two-photon

calcium imaging study on Alzheimer’s mice, a redistribu-

tion of spontaneous neuronal activity was found with

hyperactive neurons appearing exclusively in the vicinity

of amyloid plaques [77�]. Similarly, pathological effects

on glial cells have been investigated in disease models

[78,79]. This type of studies promises important novel

insights into the alterations of neural network dynamics in

various brain diseases.

Conclusion
In summary, emerging optical techniques are revolutio-

nizing the study of neural dynamics on the mesoscopic
Current Opinion in Neurobiology 2009, 19:520–529
scale, bridging the gap between the cellular level and the

level of communicating brain areas. Our review covered

only certain aspects of current developments focusing on

the rapidly advancing field of in vivo calcium imaging

from neuronal populations. In parallel, the complemen-

tary field of optical control of neural circuits using light-

activated ion channels is developing at similarly rapid

pace [80]. Moreover, novel techniques for high-resolution

anatomical reconstructions of large tissue volumes

promise to reveal detailed wiring diagrams of neural

microcircuits [81,82]. With these developments coming

together it no longer seems unrealistic to directly observe

(and manipulate) neuronal ensemble dynamics in behav-

ing animals and to relate it to the underlying wiring

scheme. This powerful convergence of matching

methods no doubt will help to uncover fundamental

principles of network dynamics in the brain.

Acknowledgements
We thank David Margolis for comments on the manuscript. The authors
acknowledge support by a Forschungskredit of the University of Zurich
(BFG), and grants from the the Swiss National Science Foundation (grant
3100A0-114624), the EU-FP7 program (project 200873), and the Swiss
SystemsX.ch initiative, evaluated by the Swiss National Science
Foundation (FH).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

�� of outstanding interest

1. Haider B, McCormick DA: Rapid neocortical dynamics: cellular
and network mechanisms. Neuron 2009, 62:171-189.

2. Buonomano DV, Maass W: State-dependent computations:
spatiotemporal processing in cortical networks. Nat Rev
Neurosci 2009, 10:113-125.

3. Churchland MM, Yu BM, Sahani M, Shenoy KV: Techniques for
extracting single-trial activity patterns from large-scale neural
recordings. Curr Opin Neurobiol 2007, 17:609-618.

4. Kerr JN, Denk W: Imaging in vivo: watching the brain in action.
Nat Rev Neurosci 2008, 9:195-205.

5. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA,
Schnitzer MJ: Advances in light microscopy for neuroscience.
Annu Rev Neurosci 2009, 32:435-506.

6. Nimmerjahn A: Astrocytes going live: advances and challenges.
J Physiol 2009, 587:1639-1647.

7. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H,
Konnerth A: Optical monitoring of brain function in vivo: from
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