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Population-level coding of avoidance 
learning in medial prefrontal cortex

Benjamin Ehret    1  , Roman Boehringer1, Elizabeth A. Amadei    1, 
Maria R. Cervera1, Christian Henning1, Aniruddh R. Galgali2, Valerio Mante    1 & 
Benjamin F. Grewe    1,3,4 

The medial prefrontal cortex (mPFC) has been proposed to link sensory 
inputs and behavioral outputs to mediate the execution of learned 
behaviors. However, how such a link is implemented has remained unclear. 
To measure prefrontal neural correlates of sensory stimuli and learned 
behaviors, we performed population calcium imaging during a new 
tone-signaled active avoidance paradigm in mice. We developed an analysis 
approach based on dimensionality reduction and decoding that allowed 
us to identify interpretable task-related population activity patterns. 
While a large fraction of tone-evoked activity was not informative about 
behavior execution, we identified an activity pattern that was predictive of 
tone-induced avoidance actions and did not occur for spontaneous actions 
with similar motion kinematics. Moreover, this avoidance-specific activity 
differed between distinct avoidance actions learned in two consecutive 
tasks. Overall, our results are consistent with a model in which mPFC 
contributes to the selection of goal-directed actions by transforming 
sensory inputs into specific behavioral outputs through distributed 
population-level computations.

Learning to appropriately respond to sensory information that is pre-
dictive of threats or rewards is a vital skill for every animal. This learn-
ing process depends on a network of interconnected brain regions 
involved in diverse functions such as sensory processing, the learning of 
stimulus-outcome associations and behavioral execution. In rodents, the 
medial prefrontal cortex (mPFC) has been implicated in linking sensory 
information to appropriate actions during learning and behavior execu-
tion in various forms of conditioning1. Specifically, mPFC neurons acquire 
strong and temporally precise responses to behaviorally relevant stimuli 
over learning1–3. Moreover, optogenetic manipulations of prefrontal activ-
ity can drive and/or inhibit behavioral execution in a variety of paradigms, 
such as fear conditioning4–6, active avoidance7,8, reward-based condi-
tioning3,9 and conditioned place preference10. Additionally, mPFC has a 
crucial role in the selection between different response options11 and in 
switching between different learned stimulus-response associations12–14.

While it is well established that behaviorally relevant sensory 
stimuli can elicit mPFC activity and that such activity can influence 
behavior, it is still unclear (1) how sensory-evoked mPFC activity 
is locally organized and transformed to drive specific actions and  
(2) how such transformations are updated to enable behavioral flex-
ibility. Investigating these questions has been challenging due to 
the properties of mPFC neural activity and the limitations of tra-
ditional experimental strategies and analysis approaches. First, 
learned, action-related activity is hard to distinguish from the pro-
nounced general motion-related activity found in mPFC15–17. Second, 
stimuli and behavioral responses often show a temporal overlap 
inherent to task design, complicating the isolation of sensory- and 
behavior-related neural activity. Third, prefrontal neurons might 
show mixed selectivity for multiple task variables18. Finally, due to this 
temporal and spatial mixing, optogenetic approaches have limited 
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Results
A new active avoidance paradigm allows linking a sensory 
stimulus to two different behavioral responses
We first developed a new 11-day instrumental conditioning paradigm 
for mice that we refer to as two-dimensional active avoidance. The 
paradigm consisted of habituation (day 1), active avoidance training 
(days 2–9) and extinction (days 10–11; Fig. 1a). Each session comprised 
50 trials, each starting with the presentation of a tone (maximum dura-
tion: 10 s, 80 dB, 8 kHz). In active avoidance sessions, the tone was 
followed by an aversive foot shock (maximum duration: 5 s, 0.2 mA).  

ability to manipulate specific task-related signals as these do not 
necessarily align with cell types or projection-specific subpopulations 
that could be targeted selectively.

Here we addressed these issues by performing large-scale neuronal 
recordings during a mouse active avoidance paradigm with changing 
contingencies between stimulus and conditioned responses. This 
experimental approach, combined with a new data analysis pipeline, 
allowed us to isolate neural correlates of individual task variables and 
to study changes in the neural correlates of stimuli and behaviors 
throughout learning.
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Fig. 1 | The two-dimensional active avoidance paradigm and recording of 
prefrontal population activity. a, Task schematic and time course of the 11-day 
learning paradigm. Tasks 1 and 2 are defined by shuttling along the x and y axes 
of the shuttle box, respectively. b, Trial structure and illustration of the different 
trial types (avoid and error). c, Percentage of successful avoid trials per active 
avoidance session (n = 12 mice, mean ± s.e.m.). d, Shuttle rates for X shuttle 
(solid line) and Y shuttle (dashed line) across 11 days of learning (n = 12 mice, 
mean ± s.e.m.). e, Miniaturized (single photon) population calcium imaging 
in freely behaving mice. GCaMP6m was genetically expressed in pyramidal 
neurons, and a GRIN lens was implanted above the PL. Scale bar: 1 mm. f, Cell 
map of an example animal. Scale bar: 100 μm. g, Calcium fluorescence traces of 
ten example neurons on days 1, 6 and 11. h, Top, mouse speed for five exemplary 
avoid trials including markers for three reference time points (tone start,  

shuttle start and tone end). Bottom, distributions of latencies from tone start  
to shuttle start and shuttle start to tone end over all avoid trials (days 2–9,  
12 mice). i, Top, calcium fluorescence traces of one example neuron aligned to 
tone start (left) or shuttle start (right). Trials are sorted according to trial length. 
Bottom, trial-averaged neuronal activity of the same neuron. j, Percentage of 
trial-responsive neurons across 11 days of learning (n = 12 mice, mean ± s.e.m.). 
See Methods for the definition of trial-responsiveness. k, Overlap of trial-respon
sive subpopulations across 11 days, where the overlap between days i and  j is 
defined as ni and j/((ni + nj)/2). l, Trial-averaged response of four example neurons 
aligned to tone start (left) or shuttle start (right). OFC, orbitofrontal cortex;  
IL, infralimbic cortex; PL, prelimbic cortex; D1, day 1; D2–D4, days 2–4; D5–D9, 
days 5–9; D10–D11, days 10–11.
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On each trial, we defined a safe zone that covered half of the chamber 
and whose location depended on the position of the mouse at the trial 
start and the task type (see below). Mice could avoid the shock by mov-
ing into the safe zone during the tone presentation, which immediately 
terminated the trial (Fig. 1b). On days 2–4, mice were required to shuttle 
along the x axis of the box to reach the safe zone (Fig. 1a (task 1) and 
Supplementary Video 1). To study whether and how subjects could flex-
ibly adapt their avoidance behavior, days 5–9 required shuttling along 
the perpendicular y axis (Fig. 1a (task 2) and Supplementary Video 1).  
If mice did not shuttle into the safe zone during the tone, the shock 
was delivered and two of the four movable platforms were elevated 
to mark the safe zone and to allow the animals to escape the shock by 
jumping on the platform (Methods). Trials in habituation and extinc-
tion sessions (days 1, 10 and 11) included tone presentations, but no 
shock presentations. For each trial in these sessions, the definition of 
the safe zone was randomly chosen to follow the logic of either task 1 
or 2. As for the learning sessions, the tone was shut off or platforms 
were raised depending on the animal’s behavior. In the following text, 
we refer to trials that were terminated by the execution of the correct 
shuttle action during the tone as avoid trials and to trials that included 
a shock presentation as error trials (Fig. 1b). During task 1, the propor-
tion of avoid trials increased from 40 ± 4% to 84 ± 2% (mean ± s.e.m.; 
Fig. 1c). After the task switch on day 5, performance dropped to 44 ± 6% 
but recovered to 81 ± 4% by the end of task 2. This recovery was based 
on mice adjusting their shuttle behavior toward the correct direction 
(Fig. 1d and Extended Data Fig. 1). While the Y-shuttling rate increased 
from 19 ± 6% to 81 ± 4% between days 4 and 9, X-shuttling concurrently 
dropped from 84 ± 2% to 27 ± 4%.

To investigate the neural correlates of the learned avoidance 
behaviors in mPFC, we expressed the genetically encoded calcium indi-
cator GCaMP6m in excitatory neurons of the prelimbic area (Fig. 1e and 
Extended Data Fig. 2) and used miniaturized fluorescence microscopy 
to image population activity in freely behaving mice (Supplementary 
Video 2). This allowed us to record and track the activity of 3,333 mPFC 
excitatory neurons in 12 mice (278 ± 50 neurons, mean ± s.d. over mice) 
throughout the whole 11-day paradigm (Fig. 1f,g and Extended Data 
Fig. 3 and 4).

To analyze the recorded neural activity during avoid trials, we 
first aligned recordings to the following two key events within each 
trial to account for trial-to-trial variability: tone start and shuttle start 
(Fig. 1h). In a window around these alignment time points, sensory 
stimulation and behavior were consistent over trials, such that we 
could compute trial averages and jointly analyze neural responses 
from multiple trials (Fig. 1i). We found that during active avoidance ses-
sions, 54 ± 3% (mean ± s.e.m., n = 12 mice) of all recorded cells showed 
significantly different activity during the trial window (tone start to 
shuttle start) as compared to baseline periods (Fig. 1j). This fraction 
was substantially lower in habituation (15 ± 1%) and extinction sessions 
(26 ± 3%), and the overlap between the classified cell subsets was high 
between avoidance sessions (60 ± 2%), but low between extinction 
sessions (28 ± 5%; Fig. 1k). These results suggest that mPFC is recruited 
for sensory processing and/or production of avoidance behavior dur-
ing active avoidance sessions. The responses of individual cells were 
highly diverse (Fig. 1l and Extended Data Fig. 5). While some cells’ activ-
ity clearly aligned with the tone or the avoidance action, other cells 
showed diverse temporal dynamics. Because it was difficult to isolate 
neuronal signals specific to the sensory stimulus, motion and avoid-
ance action on the single-cell level, we next turned to population-level 
decoding approaches.

Alignment of neural recordings from different mice into a 
joint subspace
Decoding approaches allowed for identifying and capturing differ-
ences in neural population activity between trial types (for example, 
avoidance versus error trials). Generally, such approaches are well 

suited in settings where the number of samples (here trials) exceeds 
the number of dimensions (here cells). In typical neuroscience settings, 
however, we record high-dimensional neural signals (many cells), but 
only have a few behavioral trials per subject. To facilitate decoding 
analyses, we asked if we could jointly analyze trials of different subjects 
in a low-dimensional coding subspace that is aligned between subjects 
(Fig. 2a). This approach required the recorded neural activity to have 
the following two properties: (1) the high-dimensional recordings can 
be well described by low-dimensional trajectories in the state-space 
spanned by the recorded cells and (2) the task-related neural activity 
follows similar dynamics over subjects. Using a dimensionality reduc-
tion and alignment procedure (details in Methods), we confirmed that 
our data satisfy these two properties (Extended Data Fig. 6). We cal-
culated task-related neural activity for all cells as event-aligned activ-
ity averages for avoid trials, error trials and shuttles in the intertrial 
interval (ITI; Extended Data Fig. 6a). We first showed that for individual 
subjects, more than 90% of the neural variability could be explained 
by less than 15 dimensions (Extended Data Fig. 6d (orange line)). Next, 
we showed that by aligning the state-spaces of individual subjects we 
could define one single joint subspace that shows only slight decreases 
in explained variance in comparison to the subject-specific subspaces 
(Extended Data Fig. 6d (black line)). The fact that a single joint sub-
space can capture variability for all subjects shows that task-related 
neural dynamics are highly similar between subjects. Finally, we quan-
tified the alignment quality for the individual dimensions of the joint 
subspace and found that a ten-dimensional subspace constitutes a 
good tradeoff between alignment quality and a fraction of explained 
variance (Extended Data Fig. 6e,f). In the following, we thus jointly 
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Fig. 2 | Subject alignment and prediction of avoidance actions. a, Illustration 
of the neuronal subspace alignment procedure across animals (see Extended 
Data Fig. 6 for details). b, Schematic representation of the decoding approach 
to predict avoidance behavior from mPFC neuronal activity. For each time step 
(t1, t2, etc.), an individual decoder (D1 to Dt) was trained to predict the trial outcome 
(avoid or error). c, Decoding accuracies across time for decoding of avoid versus 
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mean and 95% CIs for 80 repetitions of the analysis using different samples of 
trials; Methods). Black bar indicates significant differences between the AV and 
ITI settings based on nonoverlapping CIs. d, Same as c, but for decoders trained 
using the animals’ speed extracted from video tracking data.
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analyze neural data from all subjects and perform decoding analyses 
in the ten-dimensional subspace.

Avoidance-related activity is distinct from activity related to 
general motion
To test if mPFC population activity contained predictive information 
about upcoming avoidance actions, we trained decoders to discrimi-
nate neural activity data from avoid and error trials projected into the 
joint subspace (Fig. 2b). To capture dynamical processes during the 
trial, we trained individual support vector machine (SVM) decoders for 

every time step on temporally aligned trials. We aligned the avoid trials 
using the shuttle start as the alignment point. For error trials, however, 
this alignment point does not exist. We thus sampled an alignment point 
for each error trial (pseudoshuttle start), such that the distribution of 
trial lengths (Fig. 1h) matched the one of avoid trials. This prevented 
the trial length from being informative about the trial type.

Consistent with previous work8, we found that decoding accu-
racy increased toward the shuttle action and was above chance levels 
before shuttle start (Fig. 2c), indicating that mPFC population activity 
contained predictive information about avoidance actions. To test if 
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this effect was specific to avoidance actions or was rather a general 
property of the shuttle motion, we trained an additional set of SVM 
decoders to discriminate between spontaneous shuttles in the ITI 
versus randomly sampled ITI periods (Fig. 2c). To ensure that accuracy 
differences between avoid shuttle and ITI shuttle decoding could not 
be explained by differences in motion kinematics, we chose ITI shut-
tles such that the predictive information contained in the associated 
motion tracking data was comparable to avoid shuttles (Extended 
Data Fig. 7). We quantified this predictive information by training a 
set of decoders using video tracking data (Fig. 2d), which showed no 
difference between the AV (avoid) and ITI settings (as intended by the 
procedure detailed in Extended Data Fig. 7). In contrast, for neural 
decoders (Fig. 2c), ITI decoding accuracies were lower than for the 
avoid versus error setting, although they also exceeded chance levels. 
Together, these findings show that mPFC activity encodes information 
about upcoming avoidance actions, which cannot solely be explained 
by correlates of general motion. However, it remains unclear how the 
neural correlates of avoidance and motion relate to each other. We 
thus next assessed whether we could disentangle these signals during 
avoidance trials.

The fact that decoding performance is higher for the avoid setting 
than the ITI setting suggests that, in addition to the predictive informa-
tion related to the shuttle motion (present in ITI and avoid settings), 
there exists predictive information in neural activity that is specific to 
avoidance actions. We thus hypothesized that the predictive perfor-
mance of avoid and ITI decoders was based on different population 
activity patterns. To test this hypothesis, we first used principal compo-
nent analysis (PCA) to identify dimensions containing motion-related 
activity as the dimensions of maximal variance during ITI shuttles 
(Extended Data Fig. 8a–d). Next, we tested how removing these motion 
dimensions from the joint subspace affected decoding performance 
in the ITI and avoid settings. We removed motion dimensions by pro-
jecting trial data from the joint subspace into the nullspace of the 
considered motion dimensions. We found that removing two motion 
dimensions led to the largest relative drop in ITI decoding accuracies 
and that the decrease in predictive accuracy was substantially lower for 
avoid versus error decoding (Fig. 3a,b). These results show that most 
of the motion-related activity is contained in a low-dimensional sub-
space and that avoidance decoding does not depend on activity in this 
subspace. Thus, there must be avoidance-specific activity in different 
dimensions, and we next asked if we could capture these dimensions 
in the remaining neuronal subspace (that is, the nullspace of the two 
identified motion dimensions).

To identify avoidance-specific coding dimensions, we devised 
an iterative approach based on decoding (Extended Data Fig. 8e–h). 
We first projected all trial data into the motion nullspace (using two 
motion dimensions) to remove predictive information related to 
motion. Next, we trained a time-independent SVM decoder to dis-
criminate between avoid and error trials and interpreted the projec-
tion axis of the decoder as an avoid dimension. To find additional 
avoid dimensions, we again projected trial data into the nullspace of 
the identified avoid dimension and repeated the process. We again 
evaluated the removal of the identified avoid dimensions for the ITI 
and avoidance settings and found that the removal of the first two 
avoid dimensions strongly reduced performance in the avoid versus 
error setting but not the ITI setting (Fig. 3c,d). Taken together, these 
results show that it is possible to identify a low-dimensional subspace 
containing avoidance-specific activity, which is orthogonal to the 
dimensions containing motion-related activity.

mPFC population activity can be decomposed into 
interpretable, orthogonal dimensions
In addition to avoidance and general motion, tone stimuli are a key vari-
able during active avoidance trials. We thus asked if we could identify 
tone-related activity in the nullspace of the four identified motion 

and avoidance dimensions (Fig. 3e). We first trained SVM decoders to 
discriminate between tone (during avoid and error trials) and nontone 
(during ITI) time periods (Fig. 3f). We found that shortly after tone 
onset, the decoding accuracy was consistently above 80% (Fig. 3g), 
indicating the presence of a reliable tone representation during the 
trial. To investigate the dimensionality of this tone representation, we 
again tested the effect of iteratively removing tone decoding dimen-
sions. Removing the first dimension decreased the mean accuracy 
from 79.9% (95% confidence interval (CI) (78.5, 80.9)) to 63.3% (95% 
CI (57.8, 67.0); Fig. 3h). While this first dimension did not contain all 
tone-related information, it captured the majority (80.5% (95% CI (65.8, 
92.3))) of the remaining variance in the joint coding subspace, whereas 
subsequent decoding dimensions were limited to 12.6% (95% CI (2.0, 
29.0)) or less (Fig. 3h). We therefore focused on this one-tone dimension 
in subsequent analyses. Taken together, the decomposition of mPFC 
neuronal activity into five orthogonal dimensions (motion 1, motion 2,  
avoid 1, avoid 2 and tone) constitutes a compact and interpretable 
representation of task-related neural activity.

To analyze how population activity in the five coding dimensions 
evolves over the trial, we projected the activity into each of these dimen-
sions (Fig. 4a (top row) and Extended Data Fig. 9). We found that during 
avoid and error trials, the activity in the two motion and the two avoid 
dimensions followed similar trajectories (Fig. 4d; Pearson correlation 
coefficient = 0.88 ± 0.06, mean ± s.d. over six comparisons). Activity 
in these four dimensions was low at the tone start, with no differences 
between avoid and error trials. Activity then ramped up toward the 
start of the avoidance shuttle, with a stronger increase in avoid trials 
compared to error trials. In contrast, activity in the tone dimension 
was strongly affected by tone onset and exhibited similar trajectories 
for avoid and error trials up to shuttle start. Overall, the five coding 
dimensions captured 91.9% (95% CI (86.0, 96.6)) of the variance, show-
ing that our subspace decomposition did not miss any major sources 
of activity in the avoid and error trial averages (Fig. 4b). Despite the 
similarity of the temporal evolution of activity in the motion and avoid 
dimensions during the trial, there were clear differences between these 
dimensions for ITI shuttling (Fig. 4a (bottom row)). Activity in the 
motion dimensions increased around the ITI shuttle start in a similar 
way to the avoid shuttle start. The two motion dimensions accounted 
for 94.0% (95% CI (93.1, 95.1)) of the variance in the population activity 
averaged over ITI shuttles (Fig. 4c). In contrast, the avoid dimensions 
only explained 2.6% (95% CI (1.7, 3.2)) of the variance, as activity was not 
strongly affected by ITI shuttles. Taken together, these results show that 
a substantial fraction of the behavior-related neural variability during 
avoid trials is not contained in the dimensions that capture motion 
in the ITI but rather in avoidance-specific dimensions. Nevertheless, 
within the two motion dimensions, activity is similar between avoid 
and ITI shuttles, suggesting that these dimensions capture motion 
irrespective of behavioral context.

To assess how the five coding dimensions relate to the activity 
of individual cells, we calculated dimension weight vectors for indi-
vidual subjects by mapping the subject-specific projection matrices 
from the subject alignment procedure (Extended Data Fig. 6b) onto 
the five coding dimensions. To quantify how a given cell contributed 
to the activity in the five coding dimensions, we normalized the five 
weight values such that the sum of their absolute values was equal to 
1 (Fig. 4e). We then calculated the entropy of this distribution over 
the five dimensions to measure if cells were selective to an individual 
dimension (low entropy) or contributed to multiple dimensions 
(high entropy). The distribution of entropy values of all recorded 
cells shows that the vast majority of cells displayed mixed selectiv-
ity to multiple dimensions, while only a few cells were selective to an 
individual dimension (Fig. 4f). These results suggest that the signals 
in the identified coding dimensions are carried by a population of 
mixed-selective cells rather than by different subpopulations coding 
for individual dimensions.
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We next asked, how the activity in the five-dimensional coding 
space evolved over our learning paradigm by analyzing projections cal-
culated for different phases of the experiment (Fig. 5a–c and Extended 
Data Fig. 10). Motion-related activity dominated the neural variability 
in habituation and extinction sessions but had a reduced relative con-
tribution during active avoidance sessions (63.3% (95% CI (59.4, 67.4)) 
versus 36.1% (95% CI (35.0, 37.0)) variance explained (VE); Fig. 5c). In 
contrast, tone-related and avoidance-specific activity emerged in 
active avoidance sessions (51.4% (95% CI (46.6, 55.0)) VE versus 10.1% 
(95% CI (5.8, 16.1)) in habituation; Fig. 5c), indicating that these activity 
patterns are learned and task-related. These results show that mPFC 
activity is engaged during active avoidance learning and develops 
responses to behaviorally relevant sensory stimuli as well as activity 
specific to avoidance actions.

Avoidance-specific activity distinguishes between tasks
The avoid dimensions seemed to be differently engaged in tasks 1 and 2, 
suggesting a task-related change in avoidance-specific activity (Fig. 5a–c).  
Based on this observation, we further investigated the avoid versus 
error decoders that we initially used to define the avoid 1 and avoid 2 
dimensions (Fig. 3 and Extended Data Fig. 8). To assess time-dependent 
changes in the decoders’ ability to discriminate avoid and error trials, 
we trained the decoders using data from all avoidance sessions but 
tested them using data split into individual sessions (Fig. 5d,e). We 
found that the avoid 1 decoder worked best in task 2 sessions but also 
showed above chance performance in task 1 (Fig. 5d). In contrast, the 
avoid 2 decoder performed above chance level in task 2, but not in 
task 1 (Fig. 5e). This difference in decoding performance indicates that 
avoid 1 activity generalizes to both avoidance behaviors, while avoid 2 
emerges with the task switch to accommodate the altered avoidance 
behavior in task 2. Taken together, these results suggest that the task 
switch changes the mPFC coding of the avoidance action by layering 
additional avoidance-specific activity.

To test whether the task-related changes were specific to the avoid 
2 dimension or also affected other dimensions, we explicitly tested 
for task-based differences using an additional decoding analysis. We 

first trained decoders to discriminate trial data from tasks 1 and 2 (task 
decoding; Fig. 6a), analogously to avoid versus error decoding. We 
trained independent sets of time-dependent task decoders for avoid 
trials, error trials and ITI shuttles (X shuttles in task 1 and Y shuttles 
in task 2) based on the activity in the five-dimensional coding space 
and found that task-decoding accuracy differed between the three 
settings (Fig. 6b,c). Task decoding was more accurate for avoid trials 
than for error trials or ITI shuttles (Fig. 6c). During avoid trials, decod-
ing accuracy ramped up toward avoidance actions (Fig. 6b). These 
dynamics were less pronounced on error trials, indicating that the 
task switch did not affect task-related neural activity in general, but 
specifically altered the neural dynamics related to the execution of 
avoidance actions. Although task-decoding accuracy for ITI shuttles 
also increased toward the shuttle action, the performance was gener-
ally lower than for the avoid setting. This suggests that task-decoding 
in avoid trials was predominantly based on avoidance-specific rather 
than motion-related activity.

To further investigate how task-specific information was distrib-
uted, we next trained individual task decoders for the five coding 
dimensions. We found that the avoid 2 dimension achieved the high-
est task-decoding accuracies in the avoid, but not in the error and ITI 
settings (Fig. 6d). These results show that the task-related change in 
avoidance behavior is associated with a change in avoidance-specific 
activity, suggesting that the updated neural dynamics in mPFC could 
be the basis of the change in behavior.

The task switch alters multiple aspects of the behavior—the direc-
tion of the shuttle motion (that is, a physical feature of the behavior) and 
the relation between behavior and trial outcome (that is, an abstract 
feature of the behavior determined by task design). We therefore next 
asked how the change of these two aspects of the behavior relates to the 
observed change in neural activity. To address this question, we made 
use of the behavioral variability of task 2 avoid trials (Fig. 6e,f). In task 2, 
avoidance only requires motion in the y dimension and is independent 
of motion in the x dimension. However, animals frequently performed 
shuttles that crossed both the x and y midlines (XY shuttles). Of all of 
the 1,624 task 2 avoid trials, 930 were Y shuttles (57.3%) and 694 were 
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XY shuttles (42.7%). In terms of their motion kinematics, task 2 XY 
shuttles differ from both task 1 X shuttles and task 2 Y shuttles. In the 
abstract view of the task design, however, they only differ from task 1 
X shuttles but not from task 2 Y shuttles. To test how this was reflected 
in the activity in the identified coding dimensions, we again trained 
decoders to distinguish between the different shuttle types. We found 
that decoders were substantially more successful in distinguishing task 
2 XY shuttles from task 1 X shuttles than from task 2 Y shuttles (Fig. 6e). 
We also found that, for the task 1 X shuttle versus task 2 XY shuttle set-
ting, the avoid 2 dimension carried more information than any of the 
motion dimensions (Fig. 6f (left)). In contrast, for the task 2 Y shuttle 
versus task 2 XY shuttle setting, the motion 1 dimension contained more 
information than any of the avoid dimensions (Fig. 6f (right)). Taken 
together, these results suggest that the task-related difference in the 
avoid 2 dimension (Fig. 6f) cannot solely be explained by differences 
in motion and are thus based on the abstract task-related difference 
between the two actions.

mPFC sensory responses are modulated by avoidance 
behavior
Our subspace decomposition analysis shows that tone-related and 
avoidance-specific activity can be decomposed into independ-
ent dimensions. Yet, we also observed that the activity in the tone 

dimension was modulated by the execution of avoidance actions 
(Fig. 7). In general, tone dimension activity was well correlated with 
the binary tone on/off timing for individual subjects (Fig. 7a; Pearson 
correlation coefficient = 0.62 (95% CI (0.60, 0.63)), average over sub-
jects and active avoidance sessions, mean and CI over 80 repetitions). 
However, we observed an exception at the time of shuttle start, where 
the tone signal dropped two time steps (400 ms) after shuttle start 
(Fig. 7b), although the tone only turned off approximately 1 s after 
shuttle start when the action was completed (Fig. 1h). Alignment to the 
end of the tone showed that the drop of activity in the tone dimension 
occurred three time steps (600 ms) before the actual offset of the tone 
(Fig. 7c). To further examine the interaction between the tone dimen-
sion and the execution of the tone-induced shuttle behavior, we next 
focused on a particular trial set from the transition period between 
tasks 1 and 2. In early task 2 trials, mice performed X shuttles as learned 
in task 1, which, however, did not lead to avoidance anymore in task 2. 
During these task 2 X shuttles, we observed a similar drop in the tone 
dimension activity aligned to action onset, despite the continued tone 
presentation (Fig. 7d,e). At 1.2 s after action onset, the tone dimension 
activity was decreased by 36.7% (95% CI (28.8, 43.5)) as compared to 
trials without shuttle actions. These results suggest that the mPFC tone 
representation is modulated by the execution of the learned behavior 
that has been associated with the termination of the tone and the avoid-
ance of the shock.

Discussion
In this study, we developed a new two-dimensional active avoidance 
paradigm and combined it with large-scale neural recordings in mouse 
mPFC and a new data analysis approach. This allowed us to identify and 
characterize mPFC neural correlates of sensory stimuli and avoidance 
actions and to study them over learning. We show that the recorded 
high-dimensional population activity can be decomposed into five 
interpretable orthogonal dimensions encoding motion, tone and avoid-
ance. Notably, our approach allowed us to distinguish between learned 
avoidance-specific activity and activity related to general motion. We 
show that these signals exhibit similar dynamics during active avoid-
ance trials but behave differently during the ITI. In addition, we found 
that activity in tone and avoidance dimensions emerges with learning 
and disappears again in extinction sessions, consistent with a model in 
which mPFC uses sensory-driven responses to drive behavior execution. 
Moreover, one of the identified avoidance dimensions discriminated 
between the two avoidance tasks and only emerged in the second task. 
This suggests that the mPFC represents behaviors with sufficient resolu-
tion to enable linking stimuli to specific behavioral responses. Interest-
ingly, we found that the execution of avoidance behaviors suppressed 
sensory-related activity, suggesting that mPFC sensory representations 
also depend on the behavior of the animal. Overall, these results point 
toward the mPFC implementing the sensory-behavior link through 
dynamically interacting neural correlates that represent essential task 
features and are contained within a low-dimensional subspace of the 
overall population activity.

The interpretation of neural activity during active avoidance trials 
is challenging due to the temporal overlap of sensory stimuli, cognitive 
processes and motor signals, as well as mixed selectivity to these sig-
nals. We addressed these challenges by combining several data analysis 
steps that allowed us to identify and isolate distinct and well-defined 
neural correlates at the population level. First, we used a procedure to 
align the neural responses recorded from different subjects into a joint 
coding subspace19,20. This allowed us to jointly analyze all recorded trials 
and to use SVM decoders to accurately identify the subspace dimen-
sions that contained avoidance-specific (Fig. 3c) and tone-related activ-
ity (Fig. 3g). An often-used and powerful alternative for relating neural 
activity to task variables is the use of regression-based approaches17,21,22. 
However, in the setting of multiple temporally correlated predictor 
variables (such as motion, avoidance and tone), it becomes challenging 
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to specify a regression model that properly isolates these variables. Our 
decomposition approach allowed us to sequentially identify meaning-
ful dimensions using suitable decoding settings, and the nullspace 
projections ensured that the resulting coding space isolated individual 
features in orthogonal dimensions (Fig. 3e).

While previous work already showed that mPFC activity contains 
avoidance-predictive information8, our approach allowed us to identify 
and characterize the activity patterns that carry this information. The 
fact that we could identify avoidance-specific activity patterns that 
were not present during ITI shuttles (Fig. 4a) indicates that these activ-
ity patterns resulted from the processing of tone stimulus information. 
Nevertheless, we found that a large fraction of tone-driven activity was 
independent of the execution of avoidance shuttles (tone dimension; 
Fig. 4a). This suggests that whether or not an animal performs an avoid-
ance action is not based on differences in sensory input to mPFC but 
depends on mPFC’s processing of the incoming sensory information. 
Furthermore, the activity in the identified coding dimensions was not 
based on distinct subpopulations coding for individual variables but 

rather on a population of cells showing diverse forms of mixed selectiv-
ity (Fig. 4e,f). This high degree of mixing is consistent with previous 
work, which showed that mPFC responses in an approach-avoidance 
task show higher degrees of mixed selectivity than basolateral amyg-
dala (BLA) responses23. This mixed selectivity goes along with a higher 
representational capacity that may be necessary for behavioral flexibil-
ity23,24. Taken together, our results are consistent with a model in which 
sensory-driven mPFC responses partake in a distributed dynamical 
process25 to drive behavior execution.

While our results are only correlational, multiple studies have dem-
onstrated the causal role of mPFC in active avoidance7,8,26,27. A recent 
study showed that mPFC’s influence on avoidance behavior is medi-
ated by projections to the BLA and nucleus accumbens7. Additionally,  
Kajs et al.28 used fiber photometry recordings to show that populations 
of cells projecting to the BLA and the striatum differentially encode 
avoidance actions. Such projection-specific differences in mPFC activ-
ity have also been shown to be important for various other tasks3,14,29. 
How the high degree of mixed selectivity we observed at the single-cell 
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level maps onto such activity differences in projection-specific sub-
populations remains to be studied30.

In our study, we only record from excitatory cells, but inhibitory 
activity is crucial to understanding the transformation from stimuli to 
behaviors in mPFC. For example, mPFC inhibitory signals are required 
for avoidance26, and in fear conditioning, mPFC inhibitory neurons 
are important for temporally structuring the activity of pyramidal 
neurons4,6. Furthermore, specific interneuron types encode different 
task-related signals31, and it will be interesting to see how these are 
related to the diversity of responses of the pyramidal cells we report 
in this study.

Our result that activity in the tone dimension is modulated by 
behavior execution (Fig. 7) indicates that tone-driven mPFC signals are 
not purely sensory but are modulated by the behavior of the animal. 
The drop in tone-driven activity at action onset, despite continued 
sensory input, indicates a change in information flow induced by the 
execution of the learned avoidance action. However, it is unclear what 
causes the observed drop in activity. A recent study demonstrated 
the learned suppression of auditory cortex activity in response to 
movement-related sounds through inhibition via motor cortex inputs32. 
In mPFC, another potential substrate for the observed tone signal 

dynamics is the bidirectional interaction with the BLA. mPFC tone 
responses are dependent on inputs from the BLA8. Furthermore, the 
BLA is generally required for avoidance learning33 but is also involved 
in the expression of avoidance behavior7,34. These results highlight 
the complex interaction between sensory processing and behavior 
execution, and further work is needed to understand the temporal 
dynamics of sensory information flow through the network of involved 
brain areas.

Finally, the switch between the two active avoidance actions (X and 
Y shuttling) allowed us to study behavioral flexibility in mPFC. mPFC 
has previously been shown to be involved in switching between tasks or 
rules35–37, and our results offer new insights into how behavior-related 
neural activity is updated upon a switch between conditioned behav-
ioral responses. We found that avoidance-specific activity was organ-
ized into two dimensions, where one was general to both avoidance 
behaviors (avoid 1) and the other was specific to shuttling along the  
Y dimension and only emerged in task 2 (avoid 2; Figs. 5 and 6). Nota-
bly, our analysis of X, Y and XY shuttles (Fig. 6e,f) demonstrates that 
the change in the avoid 2 dimension cannot be explained by the mere 
change of the shuttle direction but is instead a more abstract reflection 
of the changed task contingency and the required update of the learned 
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sensorimotor transformation. The sequential layering of previously 
learned transformations and the newly added dimensions might help 
animals not only to maintain the memory of previously learned tasks 
but also to shift between tasks in a context-dependent manner. In fact, 
the similar temporal dynamics of activity in motion and avoidance 
dimensions (Fig. 4a,d) could indicate that, with progressive learning, 
new correlates of avoidance behavior are derived from either naive or 
previously learned behavioral primitives. The high level of mixed selec-
tivity in mPFC should greatly facilitate such layered learning, and future 
work should investigate how context-specific recombination of sensory 
and behavioral neural correlates might facilitate behavioral flexibility.
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Methods
All animal procedures and experiments were approved by the Cantonal 
Veterinary Office in Zurich, Switzerland.

Subjects
All experiments were performed on male C57Bl6/Crl1 mice (Charles 
River Laboratories) aged between 4 and 7 months at the start of the 
behavioral experiment. Animals were housed in individually ventilated 
cages in a 12-h light/12-h dark cycle room (lights on from 6:30 to 18:30, 
ambient temperature: 21–24 °C, humidity: 35–70%) and were provided 
food and water ad libitum. After import from the breeders, mice were 
given a 2-week acclimatization period to the new housing condition 
before the first surgery. During the experiments, mice were kept in 
groups of two to five animals.

Surgical procedures
Anesthesia. For all procedures, including anesthesia, mice received 
pre-emptive buprenorphine (Bupaq; Streuli, 0.1 mg kg−1) 20–30 min 
before anesthesia. Anesthesia was induced with a Ketamine–Xylazine 
cocktail (Ketanarcon; Streuli, 90 mg kg−1/Xylazin; Streuli, 8 mg kg−1), 
and mice were mounted onto a stereotactic frame (Kopf Instruments). 
During the procedure, mice received 95% medical O2 (PanGas, Conoxia) 
through a face mask, and their body temperature was kept steady at 
37 °C using a temperature controller and a heating pad.

Viral injections. At the time of the first surgery, mice were 8–13 
weeks old. To label excitatory neurons in the prelimbic cortex, we 
intracranially injected 500 nl (titer: 4 × 1011) of an adeno-associated 
virus driving the expression of GCaMP6m via the CamKII-promoter 
(AAV2/5-CamKIIa-GCaMP6m) into the prelimbic cortex (anterior- 
posterior, 1.8; medial-lateral, 0.4; dorsal-ventral, 2.1). We used either 
a micropump (UMP3 UltraMicroPump; World Precision Instruments) 
or a borosilicate glass pipette with a 50 μm diameter tip and injected 
the virus by applying short pressure pulses at a speed of approxi-
mately 100 nl min−1. After injection, the needle/glass pipette was left in  
place for 5 min to avoid backspill. Finally, the skin was closed using 
surgical sutures.

Microendoscope implantation. A total of 7–14 days after the viral 
injection, we implanted a small stainless steel guide tube (1.2 mm diam-
eter; Ziggy’s tubes and wires) with a custom glass coverslip (0.125-mm 
thick BK7 glass; Electron Microscopy Sciences) glued to one end as 
previously described in ref. 38. In brief, we first made a 1.2 mm diameter 
(round) craniotomy centered above the ventral-mPFC (1.8 mm anterior, 
0.4 mm medial, relative to bregma). To avoid increased intracranial 
pressure when inserting the implant, we aspirated tissue down to a 
depth of 1.9 mm from the skull surface. Next, we lowered the guide tube 
to the bottom of the incision (2.2 mm relative to the skull surface) and 
glued the guide tube to the mouse skull using ultraviolet-curable glue 
(4305 LC; Loctite). We then applied dental acrylic (Metabond; Parkell 
or Scotchbond ESPE; 3M) over the complete cranium and around the 
guide tube. Finally, we attached a metal bar and applied dental acrylic 
cement (Paladur) to stabilize the implant.

Analgesic regime. For 3 days after each surgical procedure, animals 
received buprenorphine subcutaneous (Bupaq; Streuli, 0.1 mg kg−1) 
every 6 h during the light cycle and in the drinking water (Bupaq; 
Streuli, 0.01 mg ml−1) during the dark cycle, as well as carprofen sub-
cutaneous (Rimadyl; Zoetis, 4 mg kg−1) every 12 h.

Preparation of animals for behavioral experiments. Animals received 
6–12 weeks of recovery time before testing viral expression levels. 
Approximately 1 week before starting behavioral experiments, we 
inserted the gradient index (GRIN) lens into the guide tube (GT-IFRL-
100-101027-50-NC; Grin Technologies) and attached a microscope 

base plate (Inscopix) above the implanted microendoscope with blue 
light-curable glue (Flow-it; Pentron).

Validation of imaging methodology
Perfusion. After completion of experiments, animals were given ter-
minal anesthesia with pentobarbital (Esconarkon; Streuli, 200 mg kg−1) 
and perfused transcardially with PBS followed by 4% paraformaldehyde 
(PFA). Brain tissue was removed and postfixed for 24–48 h in 4% PFA. 
Coronal slices (50-μm thick) were prepared on a vibratome (VT1000 
S; Leica) and stored in PBS.

Verification of microendoscopic implant. To confirm the placement 
of the GRIN lenses in the mPFC, cyto-structural differences in the tissue 
were highlighted using Nissl stain (NeuroTrace 530/615; Invitrogen) 
following the provided protocol from Invitrogen with a dilution of 1:50 
NeuroTrace. Slices containing the prefrontal cortex were mounted, 
and images were acquired using a fluorescence microscope (Olympus, 
BX51). Images were overlaid using the reference pictures from ref. 39. 
For each section, we marked the position of the base of the microen-
doscope for every mouse (Extended Data Fig. 2b).

Verification of cell type. Standard immunofluorescence protocols 
were used to stain inhibitory and excitatory neurons. Slides were 
incubated with the primary antibody (either rabbit anti-Neurogranin 
(Millipore, 07-425; 1:2,000) or rabbit anti-GAD65 (Millipore, AB1511; 
1:500)) at 4 °C overnight followed by a 2-h incubation at room tem-
perature with the secondary antibody Alexa 594 anti-rabbit (Invitro-
gen, A-11062; 1:200). Slides were further stained for 4 min with DAPI 
(Invitrogen, D1306; 1:1,000) in PBS (0.1 M) before mounting. Confocal 
pictures were taken in red (at wavelength 594 nm; Neurogranin or 
GAD65), green (at wavelength 488 nm; GCaMP6m) and blue channels 
(at wavelength 390 nm; DAPI), and pictures were compared for overlap 
of labeling (Extended Data Fig. 2c,d; acquired with Leica Stellaris 5, 
LAS X software).

Behavioral procedures
Calcium imaging during mouse learning behavior. Calcium imag-
ing experiments were performed using a miniaturized fluorescence 
microscope (nVista HD 2.0; Inscopix). Before behavioral experiments, 
we habituated all mice to the mounting procedure and the weight of 
the miniscope for at least three consecutive days. During the mount-
ing procedure, animals were briefly head-fixed by fixing their metal 
head bar to a custom-made mounting station with a running disk. 
Additionally, subjects were habituated to the experimental room and 
were handled by the experimenter for 5 of 7 days preceding the experi-
ment. In every imaging session, we verified for absence of shifts in the 
field of view and slightly adjusted the microscope focus if necessary. 
We acquired frames of 1,000 × 1,000 pixels at 12 bits and a frame rate 
of 20 Hz. To acquire the calcium imaging data, we used a light-emitting 
diode intensity between 10% and 25% (100–150 μW) depending on the 
strength of the GCaMP6m expression. For all recordings, we used the 
maximum imaging sensor gain level of 4. All recorded data were directly 
streamed to the hard disk of a desktop computer.

Two-dimensional active avoidance. For the two-dimensional active 
avoidance experiments, we used a rectangular shuttle box (Cambridge 
Instruments), which we separated into four compartments by using 
four equally sized platforms. We 3D-printed these movable platforms 
to fit between the bars of the shock grid, which allowed us to dynami-
cally adjust the safe zone during training. In the default position, the 
platforms were situated below the shock grid such that mice could not 
jump onto them to avoid contact with the grid. In the elevated state, 
mice could fully stand on the platform without being in contact with 
the shock grid, thereby creating the possibility of escaping shocks. We 
controlled the platforms using servo motors that we placed outside of 
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the isolation chamber. The complete learning paradigm had a duration 
of 11 days, comprising habituation (day 1), active avoidance task 1 (days 
2–4), active avoidance task 2 (days 5–9) and extinction sessions (days 
10 and 11). All sessions had a duration of 40 min and contained 50 trials 
with pseudorandom ITIs of 30 ± 10 s. Each of the trials started with the 
presentation of an 8 kHz tone at 80 dB for 10 s. In all active avoidance 
sessions (days 2–9), the tone was followed by a light foot shock (0.2 mA) 
with a maximal duration of 5 s. For each of the trials, we defined half of 
the shuttle box as a safe zone. We determined the position of the safe 
zone by the trial type (task 1 or task 2) and the position of the animal at 
the start of the trial. For task 1 trials, mice had to cross the midline along 
the x axis (X shuttles) of the cage to reach the safe zone, whereas for task 
2 trials, mice had to cross the midline along the y axis (Fig. 1a). If mice 
entered the safe zone during tone or shock presentation, we blocked 
both tone and shock channels until the end of the trial. If mice did not 
shut off the tone before shock onset, we elevated the two platforms 
in the safe zone for a duration of 15 s, time-locked to the onset of the 
shock, providing mice with the possibility to escape. We recorded all 
mouse behavior using two top-view B/W cameras (DMK 23FV024; 
ImagingSource) which covered the entire cage and were later merged 
to produce a single behavior video. The recording of individual frames 
of the behavior cameras was synchronized to the miniscope recordings 
using a hardware trigger, which allowed the exact alignment of neural 
and behavioral data.

Extracting neural activity from calcium imaging data
Preprocessing of calcium imaging data. We implemented the fol-
lowing procedures to preprocess the video of each individual imaging 
session. We first spatially downsampled all frames by a factor of 2 to 
obtain 500 × 500-pixel frames. Next, we used the TurboReg algorithm38  
for motion correction by aligning each frame to a reference frame. 
We then temporally downsampled videos by a factor of 4, resulting 
in a frame rate of 5 Hz. To account for slow changes in luminosity 
related to bleaching, we fit a rank-2 bleaching model by running PCA 
on a temporally smoothed version of the video and then subtract-
ing this model from the original video. Next, to remove wide-field 
luminosity fluctuations occurring on a faster time scale (for exam-
ple, neuropil signals), we normalized each frame by dividing it by its 
lowpass-filtered version (using a Gaussian spatial frequency filter with 
a s.d. of 7; Extended Data Fig. 3c–e and Supplementary Video 3). Finally, 
we re-expressed all frames in units of relative changes in fluorescence, 
given by ∆F(t)/F0 = (F(t) − F0)/F0, where F0 is the mean frame obtained 
by averaging over the entire movie.

Cell extraction for individual sessions. To automatically identify 
individual neurons in the calcium imaging movies of a given imaging 
session, we used a well-established cell extraction algorithm based 
on PCA and independent component analysis (ICA)39. This algorithm 
generates spatial filters that correspond to the cells’ locations, which 
allowed us to extract the corresponding temporal activity traces. 
However, instead of extracting these activity traces for each session 
individually, we first use the positional information contained in the 
identified spatial filters to align the movies from all imaging sessions 
of a given mouse.

Session alignment. To be able to track cells across imaging sessions, 
we applied the following alignment procedure for each mouse. We first 
constructed cell maps for every session by calculating the maximum 
projection of all cells’ spatial filters onto one image (see outlines in 
Fig. 1f). We then used MATLAB’s imregister function to align the ses-
sions’ cell maps onto one reference session. We controlled the quality 
of the alignment by quantifying the pairwise similarity between the 
cell maps of individual sessions (Extended Data Fig. 3b) and by visually 
inspecting the alignment (Supplementary Video 4). Based on these 
criteria, we excluded sessions for which we could not find a satisfactory 

alignment (Extended Data Fig. 3b). Next, we used the registration 
coordinates of the aligned cell maps to align all session movies into a 
common reference frame. This allowed us to concatenate all session 
movies to construct one movie containing the full experiment. To 
account for differences in the signal-to-noise ratio of individual ses-
sions, we calculated the overall s.d. of all pixels for every session and 
then scaled the corresponding movies to match the minimal s.d. The 
resulting concatenated movie thus contained ΔF/F values with a stable 
mean and s.d. over all sessions.

Joint analysis of multiple sessions. We used the aligned and concat-
enated movies of individual subjects and PCA/ICA to obtain spatial 
filters and activity traces over the whole experiment. Because the high 
number of frames made running PCA/ICA on the whole concatenated 
movie intractable, we instead generated spatial filters by performing 
signal extraction on a reduced movie, containing 6,000 consecutive 
frames from every session (that is, half of the data). We then recovered 
the activity traces over the full duration of the concatenated movie by 
projecting the full movie onto these spatial filters.

Postprocessing and validation. A known issue with PCA/ICA is that 
individual cells are occasionally split into multiple components. To 
make sure we do not include split cells in our analyses, we detected pairs 
of cells that have highly correlated activity (Pearson correlation > 0.7) 
and are spatially close (centroid distance < 20 pixels) and excluded 
one of the cells for each pair. Finally, we manually validated each cell 
by inspecting its morphology, activity trace over all sessions, mean 
calcium transient and checking whether peaks in the activity trace were 
consistently caused by the same pixel pattern (Extended Data Fig. 4).

Quantification and statistical analysis
Behavior analysis. To analyze animal behavior, we first stitched the vid-
eos of the two behavior cameras to obtain a single video. We then used 
DeepLabCut software40 to track five points of the animal (Extended 
Data Fig. 1). To quantify the overall speed of the animal, we averaged 
the positions of the three most stable points (left ear, right ear and mini-
scope bottom) and calculated the instantaneous speed per time step.

Alignment of trials and ITI shuttles. We aligned avoid trials accord-
ing to the start of the avoidance shuttle (shuttle start). We defined 
the shuttle start time as the timepoint with the maximal increase in 
instantaneous speed within the 2 s window before the detected shut-
tle. For all analyses that considered the window starting 3 s before the 
shuttle start, we discarded avoidance trials with a shuttle start earlier 
than 3 s after tone start. To ensure that error trials were comparable 
to avoid trials in terms of trial lengths, we randomly sampled error 
trial alignment points (pseudoshuttle start) such that they matched 
the distribution of shuttle start time points of avoid trials between 
3 s and 9 s. To account for the variability introduced by this sampling, 
we repeated each analysis over multiple repetitions (Avoid and error 
decoding). We aligned ITI shuttles analogously to avoid trials.

Single-cell analysis. To define cells as trial-responsive, we considered 
the 3 s window after tone start and the 3 s window before shuttle start. 
We calculated z scores per time step, using the 6 s window before the 
trial start as a baseline period. We defined cells as trial-responsive 
if their mean absolute z score exceeded a value of 1.96 (P < 0.05, 
two-tailed; data distribution was assumed to be normal, but this was 
not formally tested)8.

Subject alignment. To align the population activity of different sub-
jects into one common subspace, we first collected event-aligned trial 
averages (Extended Data Fig. 6). We separately aligned data from avoid 
trials, error trials and the ITI for the two tasks (that is, 2 × 3 conditions). 
For avoid trials, we used windows around the tone start (−1 s to 3 s) and 
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shuttle start (−3 s to 1 s) alignment points. For error trials, we used the 
same structure using the sampled alignment points (pseudoshuttle 
start). For ITI shuttles, we used the window from −4 s to 4 s around 
shuttle start. We next computed condition averages for each cell in 
each of the six conditions and concatenated all cells from all animals to 
obtain six (n × t) matrices, where n is the total number of neurons and 
t is the number of time steps (8 s at 5 Hz). We then mean-subtracted 
these six matrices and normalized them to have a Frobenius norm of 1. 
Next, we concatenated the six normalized condition average matrices 
along the time dimension to obtain an (n × 6 t) matrix (Extended Data 
Fig. 6b (left)), on which we then performed PCA. We defined the result-
ing (n × k) matrix of coefficient values as the joint subspace (Extended 
Data Fig. 6b (middle)), where k is the number of PCs we chose to use. To 
compute subject-specific projection matrices for projecting cellular 
activity into this joint subspace, we split the coefficient matrix along 
the cell dimension back into coefficient matrices for the individual 
subjects (Extended Data Fig. 6b (right)). Because these matrices are not 
orthogonal anymore, we used the QR decomposition to orthogonalize 
them as the final step of the procedure. To ensure that the alignment 
procedure did not introduce artifacts in further analyses, we used half 
of the trials for alignment and the other half for the decoding analyses 
described below. The choice of trials was randomly assigned for every 
repetition. We chose to work with a ten-dimensional joint subspace, as 
ten constitutes a good tradeoff between explained variance and align-
ment quality (Extended Data Fig. 6d–f). Another factor that we took 
into account is that our decomposition approach (see below) requires 
a certain dimensionality to separate neural signals into task-related 
dimensions. In our analyses, we consider five task-related dimensions, 
but we empirically observed that a higher number of dimensions in the 
initial joint subspace led to cleaner separation of signals into these five 
dimensions, as the decomposition procedures had a higher degree  
of freedom.

Avoid and error decoding. We aligned avoid and error trials (as 
described above) and trained individual decoders for every time 
step from −3 s to 1 s from the alignment points. Decoders were lin-
ear SVMs with a box constraint parameter of 1, and we used fivefold 
cross-validation to estimate test accuracies. We used avoid and error 
trials from days 3–9 and balanced the two classes by subsampling 
300 trials per class in all settings. For some avoid trials, the tone 
can be turned off in the 1 s after shuttle start (Fig. 1h). Because we 
want the decoders to only capture avoidance-related information, 
we excluded these trials for the respective time steps to ensure that 
there is no confounding tone-related information. To deal with the 
variability introduced through sampling (error trial alignment and 
trial samples), we repeated each analysis multiple times (typically 80 
times, if not reported otherwise) and computed average accuracies 
over repetitions. When separately evaluating decoders for individual 
subjects (Extended Data Fig. 8h,l) or sessions (Fig. 5d,e), we split all 
trials into one training set and one test set (instead of using fivefold 
cross-validation). This required decreasing the number of trials used 
for training and testing to 150 per class.

ITI control and video decoders. In the ITI decoding setting, we con-
sidered the window from −3 s to 1 s around the shuttle start for each ITI 
shuttle. We trained decoders to discriminate ITI shuttles from random 
4 s periods in the ITI. For the video decoder control setting, we used the 
five-dimensional speed vector from the DeepLabCut tracking points 
(Extended Data Fig. 1a). The purpose of the ITI control is to assess how 
much of the effect we see in avoid versus error decoding (Fig. 2c) can 
be explained by motion-related information. We thus had to match 
the amount of motion-related information between the avoid versus 
error and the ITI shuttle versus ITI random settings. We achieved this 
by selecting ITI shuttles based on their mean speed (faster shuttles 
are easier to decode; Extended Data Fig. 7a–d). By choosing the ten 

fastest shuttles from every session for decoding, we could match the 
performance of video decoders between the avoid and ITI settings 
(Fig. 2d and Extended Data Fig. 7c,d). This allowed us to conclude that 
the differences we observed for neural decoders (Fig. 2c) are not based 
on simple differences in motion.

Identification of motion dimensions. To identify motion-related 
dimensions in the joint coding subspace, we collected ITI shuttles 
from task 1 and task 2 sessions and computed average activities for 
the window from −4 s to 4 s around shuttle start. We then performed 
PCA on the resulting activity matrix and considered the first five PCs 
as motion dimensions.

Identification of avoidance dimensions. To define avoid dimensions, 
we first projected all trial data into the nullspace of the first two motion 
dimensions. Next, we iteratively defined avoid dimensions using the fol-
lowing procedures: (1) we train a time-independent avoid/error decoder 
using randomly sampled time points from the −3 s to 1 s window around 
shuttle start (one per trial), (2) we compute the avoid dimension by nor-
malizing the decoder weight vector to have a norm of 1 and projecting 
this vector back from the nullspace into the ten-dimensional subspace, 
(3) we project the trial data into the nullspace of the space given by the 
first two motion dimensions and all avoid dimensions and (4) we repeat 
the process with different trial samples and timepoint samples until we 
have obtained five avoid dimensions.

Identification of tone dimension. To identify tone dimensions, we 
followed the same strategy as for avoid dimensions in the nullspace of 
the first two motion dimensions and the first two avoid dimensions. 
We trained a time-independent tone decoder using randomly sampled 
time points from the first 5 s of avoid trials (we only used time steps 
before shuttle start) and error trials. The baseline period was defined 
using data points from the period 1 s before tone start.

Task decoding. We trained time-dependent SVM decoders to discrimi-
nate between data from task 1 (days 3 and 4) and task 2 (days 6–9) based 
on activity in the five-dimensional coding space (Fig. 6a–c). We trained 
an independent set of decoders for avoid trials, error trials and ITI shut-
tles. For ITI shuttle task decoding, we used only X shuttles for task 1 and 
only Y shuttles for task 2, such that the ITI shuttle setting has the same 
task-specific motion profiles as the avoid setting. This choice ensures 
that performance differences between the avoid and ITI settings can-
not be explained by simple differences in motion profiles between 
the tasks. To quantify the importance of a given coding dimension for 
task-decoding accuracy, we repeated the decoding procedure with 
individual dimensions (Fig. 6d).

Software
For all data analysis (image preprocessing and population analysis) and 
statistics, we used the MATLAB programming environment (2016a).

Statistics and reproducibility
For all analyses, including random sampling (for example, choice of 
trials used for subject alignment or decoding), we performed multiple 
repetitions with independently drawn samples. Based on these repeti-
tions, we computed 95% bootstrapping CIs as follows: we sort all values 
and take the 3rd and 78th values as borders of the CI, as this interval con-
tains 76 of 80 (that is, 95%) of the values. We then determine significance 
based on nonoverlapping CIs. If not indicated differently, violin plots 
indicate mean and 95% CIs. Box plots indicate median (center), 25th and 
75th percentiles (box) and most extreme data points (whiskers) that 
were not considered outliers (points for which the distance from the 
box exceeds 1.5 times the length of the box). The sample sizes required 
for this study were initially estimated based on pilot behavior studies. 
No statistical method was used to predetermine sample size, but our 
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sample sizes are similar to those reported in previous publications8,41. 
We excluded one animal because we did not observe any neuronal 
activity due to insufficient labeling and/or GRIN lens misplacement. In 
accordance with the animal welfare regulations, we had to terminate 
the behavior experiments for six mice because they did not learn the 
task sufficiently (performance below 50% after 3 days of training). We 
excluded eight imaging sessions (from a total of 132, 12 mice × 11 days) 
because we could not align the recorded frames to frames from previ-
ous sessions (Supplementary Video 4 and Extended Data Fig. 3b). The 
experiments were not randomized, and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The source data that support the findings of this study are available 
at Zenodo at https://zenodo.org/records/11282437 (ref. 42). The raw 
imaging data will be made available upon reasonable request. Source 
data are provided with this paper.

Code availability
The MATLAB codes detailing all aspects of the performed analysis are 
publicly available at Zenodo at https://zenodo.org/records/11283463 
(ref. 43).
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Extended Data Fig. 1 | Animal tracking and behavior analysis. (a) DeepLabCut 
tracking points of the animal. (b,c) Avoidance trajectories during task 1 
(X-shuttling) and task 2 (Y-shuttling), respectively. (d) Distribution of shuttle 
angles in degrees for all 12 animal subjects in tasks 1 and 2. Box plots indicate 
median (center), 25th and 75th percentiles (box) and most extreme data points 
(whiskers) that were not considered outliers (points for which the distance from 
the box exceeds 1.5 times the length of the box). (e) Mean shuttle trajectories 
depicted in the shuttle box for all 12 animals. (f) Animal speed time courses 

aligned to the shuttle start for tasks 1 (blue, left) and 2 (green, right) (mean ± s.d. 
over shuttles from 12 mice). ITI shuttles are depicted in gray. (g) Distributions 
of mean shuttle speed (average over 2 s window centered around shuttle) for ITI 
(gray) and avoid (colored) shuttles in tasks 1 (left, 1151 avoid shuttles, 1329 ITI 
shuttles) and 2 (right, 1945 avoid shuttles, 3859 ITI shuttles). (h) X axis (blue) and 
Y axis (green) shuttle frequency compared to the respective ITI (gray) shuttle 
frequency across days (mean ± s.e.m. over 12 mice).
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(a) Verification of the placement of the GRIN lens, with the GRIN lens position 
displayed in an example coronal mouse brain section. Nissl stain (red) and 
GCaMP6m (green). The shade blue area below the GRIN lens corresponds to  
an estimate of the distance between the edge of the implant (displayed in b) 
and the imaging plane (200 μm). (b) Locations of the edge of the implant were 
mapped onto the mouse brain atlas (see ref. 44) for each individual animal.  
(c) Left: immunohistological validation of GCaMP6m expression in PL, comparing 

GCaMP6m (green) and neurogranin labeling (red) in excitatory neurons.  
Top right: overlap. Middle right: GCaMP6m. Bottom right: neurogranin.  
(d) Left: comparison of GCaMP6m expression (green) to GAD65 staining (red). 
Top right: overlap. Middle right: GCaMP6m-expressing neurons. Bottom right: 
GAD65-positive neurons. Arrows indicate three examples of GAD65-positive 
neurons. Five independent repetitions with images from different subjects 
produced qualitatively similar results (c,d).
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Extended Data Fig. 3 | Validation of imaging and signal extraction 
techniques. (a) Map of identified cells (in green) overlaid on an imaging 
frame displaying the log of the standard deviation of individual pixels over all 
preprocessed, aligned and concatenated recording sessions for an example 
mouse. This visualization provides an intuition for the spatial extent of individual 
cells, but by itself cannot capture the quality of individual cells (see Extended 
Data Fig. 4). Scale bar: 100 μm. Five independent repetitions with data from 
different subjects produced qualitatively similar results. (b) Quantification of 
session alignment for individual subjects. We calculated pairwise mean squared 
errors (MSEs) between the cell maps of two aligned sessions. Shifts in the field of 
view that could not be aligned were visible as high MSE values between a given 
session and a set of well-aligned sessions. Data exclusions are displayed in red.  
(c) Analysis of background (BG) activity and the effect of lowpass normalization. 
For all cells of an example session (example cell displayed in grayscale), we 
calculated background activity traces using ring filters centered on the cell’s 
centroid (displayed in purple). Scale bar: 30 μm. (d) Activity traces for the 
two spatial filters from c with and without lowpass normalization. Without 
normalization, cell and background activities are highly correlated, indicating 
contamination of the cellular signal. With normalization, the correlation 
disappears and calcium transients can be resolved in the cellular signal.  
(e) Quantification of the correlation between cellular and background activity  

for all cells of an example session. Without lowpass normalization, most 
cells showed substantial positive correlations (median Pearson correlation 
coefficient = 0.60). Using the lowpass normalization, the median Pearson 
correlation coefficient dropped to 0.02, indicating that the lowpass filtering 
strategy employed in our pipeline successfully removes the majority of neuropil 
contamination from the cells’ activities. (f) Analysis of motion-related activity as 
a control for motion-related artifacts in neural activity. Average response to all 
ITI shuttles (black) of an example cell with individual example shuttles displayed 
in gray. This example cell shows motion-related activity based on calcium 
transients that are not consistent with artifacts based on microscope motion. 
(g) Quantification of motion-related responses over all recorded cells. Motion 
score is calculated as the mean z score in the 4 s after motion onset (at time 0). Many 
cells show positive (green) and negative (red) responses, but many cells (gray) 
are not strongly modulated by motion, indicating that there is no systematic 
motion artifact affecting all cells. (h) The time course of positively and negatively 
modulated cells is consistent with neural responses (slow and asymmetric) rather 
than motion-related artifacts, which would be expected to be fast and symmetric. 
(i) Quantification of peak latency for positively and negatively modulated cells. 
(j) Quantification of response symmetry for positively and negatively modulated 
cells. Symmetry index is calculated as (activitypeak + 2 s + activity peak − 2 s)/activitypeak, 
such that 0 indicates symmetric responses.
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Extended Data Fig. 4 | Quality control for identified neurons. (a) Features of 
an example cell that was accepted in the annotation process. A cell is defined 
by its activity trace over all sessions (top left, individual imaging sessions are 
indicated as different gray shades, see top right for zoom-in) and its spatial filter 
(bottom middle). Scale bar: 100 μm. We detect events (red dots) as peaks in the 
activity trace that deviate 3 standard deviations from the mean. We then use 
these detected events to calculate a mean transient (bottom left in red, individual 
events in black) and to display snapshots of the images that caused the peaks in 
the activity trace (bottom right). Cells are accepted if they have (1) a clear and 
appropriately shaped spatial extent, (2) a stable activity trace with well-identified 
peaks, (3) a mean transient with fast rise and slow decay as expected from calcium 
indicator kinematics and (4) if the event snapshots consistently resemble the 
spatial filter (displayed on the upper left of the snapshot matrix). Snapshots that 

do not resemble the filter indicate contamination through another cell.  
(b) Example of a rejected cell with a noisy spatial filter and activity trace,  
a symmetric mean transient and inconsistent event snapshots. (c) Distributions 
of mean numbers of events per day. (d) Distributions for the coefficient of 
variation of the number of events per day (ratio of s.d. and mean). The CV tends 
to be substantially below 1 (median = 0.52 for accepted cells), indicating that the 
distribution of the number of events per day does not fluctuate far from the mean 
over days (displayed in c), which suggests stable activity levels over sessions. 
(e) Distributions of symmetry index calculated using the mean transient as 
(activitypeak + 1 s + activitypeak − 1 s)/activitypeak. (f) Distribution of filter diameter 
for accepted (green) and rejected cells (red). (g) Distributions of snapshot 
dissimilarity values. Snapshot dissimilarity is calculated as the mean of the mean 
squared error (MSE) between the filter and each event snapshot.
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Extended Data Fig. 5 | Diversity of single-cell response profiles. (a) Trial-
averaged and z-scored neural activity (Methods) of all recorded cells during 
avoid trials of an example session (session 7). Activity is aligned to tone start 
(left) or shuttle start (right), as shown, for example, cells, in Fig. 1l. Cells are 
sorted according to their time-averaged z score in the 3 s window after tone start 
(window is indicated by the black bar at top of panel). This sorting reveals that 
cells tend to have different responses in the tone start and shuttle start windows. 
Barcode indicates if cells were classified as trial-responsive (black) or not (white). 

(b) Same as a, but cells are sorted according to their mean z score in the 3 s 
window preceding shuttle start. This sorting reveals that the activity preceding 
shuttle actions tends to be different from both the activity at tone start and the 
activity after shuttle start. (c) Same as a, but cells are sorted according to their 
mean z score in the 1 s window after shuttle start. Overall, responses are highly 
diverse over the population because cells show different combinations of activity 
levels for the different task-related events.
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Extended Data Fig. 6 | Alignment of neural data across animals into a joint 
subspace. (a) Specification of time points used for alignment displayed for two 
example neurons from different subjects that show similar responses during 
avoid, error and ITI events in task 1 (blue shade) and task 2 (green shade). (b) To 
align neural population data, the temporally aligned event averages displayed 
in a are first concatenated for all cells. We then process these event averages 
(Methods) and concatenate them along the time axis. Next, PCA is used to 
generate the joint subspace, which is defined by the coefficients of the first n PCs 
(n is chosen below). Subject-specific projection matrices into the joint subspace 
can then be computed by splitting the coefficient matrix back into matrices for 
individual subjects and orthogonalizing them using the QR decomposition.  
(c) Top: mean projections onto subspace dimensions 1–10 (n = 12 subjects). 
Shading indicates temporal structure displayed in a. Bottom: projections 
displayed for individual subjects, highlighting common structure. (d) Variance 
explained by the first 20 subspace dimensions (mean and 95% CIs for 80 
repetitions) for the joint PCA + QR procedure (black). To control how the 
alignment procedure affects how well the low-dimensional subspace captures 
neural variability, we performed PCA individually per subject as an upper 

baseline for the explained variance (orange). The alignment only has a minor 
effect on the variance explained by the identified subspace. In this work, we 
use the first 10 dimensions to define the joint subspace. (e) Left: cross-subject 
correlation of the first subspace dimension calculated for pairs of projections 
into this dimension (see bottom row of c). Right: similarity of pairs of dimensions, 
where similarity is computed by averaging the elements of the triangular  
cross-subject correlation matrix displayed on the left. (f) Average dimension 
similarity for the first 20 subspace dimensions with alignment (PCA + QR,  
black) and without alignment (Indv. PCA, orange) (mean and 95% CIs for  
80 repetitions). Additionally, we controlled how the dimension alignment quality 
depends on the temporal alignment of specific activity patterns around the 
chosen events (rather than general bump-like activity) by shuffling event types 
between subjects (event shuffle, green). We found that shuffling events led to a 
marked drop in alignment quality, indicating that the correct alignment of neural 
subspaces depends on the correct temporal alignment of conceptually similar 
events. We chose the number n of used dimensions to be 10, as it constitutes a 
good tradeoff between explained variance (see c) and alignment quality.
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Extended Data Fig. 7 | Selection of ITI shuttles and comparison to avoid 
shuttles. (a) Mean speed of ITI and avoid shuttles for different values of n, where 
n refers to the n fastest shuttles selected from each session. With decreasing n, 
the average speed trace of ITI shuttles becomes more similar to the one of avoid 
shuttles. (b) Distribution of mean speed (average over 2 s window centered 
around shuttle start) values of ITI shuttles for different values of n. Dots indicate 
distribution mean, which shifts toward that of avoid shuttles (black). (c) Decoding 
accuracy of video decoders trained to discriminate avoid and error trials (black)  
or ITI shuttles vs. random ITI periods. (d) Difference in predictive accuracy in  
c (average accuracy 2 s before shuttle start) between avoid/error and ITI decoding 
for different values of n (mean and 95% CIs for 80 repetitions). (e,f) Mean speed  
for the avoid and error (e) and ITI shuttle and ITI random (f) comparisons 
for n = 10. While the exact speed of avoid and ITI shuttles is not matched, the 
difference to error trials/random ITI periods is comparable. (g,h) Distributions of 

mean speed for avoid and ITI shuttles (g) and error trials and random ITI periods  
(h). While differences between the settings remain, the distributions of mean 
speed largely overlap. (i–k) UMAP embeddings of the 100-dimensional motion 
traces (5 tracking points × 20 time steps). Dimension 1 separates shuttles 
from non-shuttles. Avoid and ITI shuttles as well as error trials and random 
ITI periods are intermingled. (l) Discriminability index for the avoid and ITI 
settings quantified for the two UMAP dimensions (n = 10 random initializations). 
Dimension 1 consistently distinguishes between shuttles and non-shuttles in 
both settings, while dimension 2 does not. (m) Correlation of UMAP dimensions 
and mean speed (n = 10 random initializations). High correlation for dimension 
1 indicates that mean speed is the main feature that distinguishes the different 
motion traces. Box plots indicate median (center), 25th and 75th percentiles (box) 
and most extreme data points (whiskers) that were not considered outliers (points 
for which the distance from the box exceeds 1.5 times the length of the box).
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Extended Data Fig. 8 | Definition of coding dimensions. (a) Mean animal  
speed during ITI shuttles used for the definition of motion dimensions (n = 1568 
ITI shuttles). (b) To define motion dimensions, we computed the average  
neural activity in the joint subspace over all ITI shuttles and performed PCA.  
(c) Variance is explained by the first five PCs evaluated for the ITI shuttles used 
in dimensionality reduction (DR data) and for the ITI shuttles used in decoding 
analyses (val. data). Mean and 95% CIs for 80 repetitions. (d) PC1 projections for 
ITI shuttles of individual subjects. While there are differences in the magnitude, 
the temporal evolution of the projections is highly similar to the one of PC1 
obtained using the pooled data (red line in b, Pearson correlation coefficient 
0.983 ± 0.010, mean ± s.d. over 12 subjects). (e) Correlation coefficients for 
pairwise comparisons of time-step decoder weights (mean over 80 repetitions) 
for avoid versus error decoders from Fig. 3c (right, black line). Especially before 
action onset, decoder weights show high correlations, indicating a stable 
representation of avoidance-predictive activity. Based on this finding, we 
trained a single time-independent decoder for all time steps, whose weights 
we then used to define the Avoid dimension. (f) Accuracy of avoid versus error 
decoding per time step for a set of time-dependent decoders trained individually 
per time step, and one single time-independent decoder trained using data 
from all time steps (mean over 80 repetitions). The time-independent decoder 
was separately evaluated with data from individual time steps. The accuracies 

before action onset are matched between the two settings (time-dependent 
and time-independent), suggesting that avoidance-predictive activity can be 
captured using a single decoder. We therefore used the weights of this single 
time-independent decoder to define avoid dimensions. (g) Decoding accuracy 
of time-independent decoders for the progressive removal of avoid dimensions 
(mean and 95% CIs over 80 repetitions). Avoid dimensions are defined by the 
decoder’s weights vector and are iteratively removed via nullspace projections. 
Comparison to randomly removed dimensions in blue. (h) Analysis of variability 
over subjects. To assess decoding accuracies per subject we trained a single 
decoder using data from all subjects but evaluated it separately using data from 
individual subjects. The resulting accuracies show differences in magnitude but 
all follow the same temporal dynamics as time-independent decoder trained on 
pooled data (the green line in e, Pearson correlation coefficient 0.984 ± 0.012, 
mean ± s.d. over 12 subjects). This suggests that the effects captured with our 
joint analysis of all subjects are representative of effects on the single subject 
level. (i–l) Analogous to e–h for tone decoding. Time-step tone decoders show 
representational stability (i), performance of time-step decoders can be matched 
using a single time-independent decoder (j) and the temporal evolution of 
decoding accuracies is consistent between pooled data and individual subjects 
(l, Pearson correlation coefficient 0.987 ± 0.015, mean ± s.d. over 12 subjects).
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Extended Data Fig. 9 | Variability in neural activity over subjects and relation 
to avoidance behavior. (a) Projections of avoid-trial neural activity onto the 
five coding dimensions (Fig. 4a) for each subject. (b) Same as a for error trials. 
(c) To test whether variability in neural activity over subjects relates to behavioral 
variability, we correlated activity in the avoid dimensions to the overall task 
performance and task 2 shuttle angle over subjects (see following panels). 
Panel c shows the relation of the magnitude of activity in the avoid 1 dimension 
(time-averaged over the 3 s window preceding avoid start and averaged over all 

avoid trials) and overall performance (% avoid trials in active avoidance sessions). 
We found no clear correlation for this or any of the following analyses (Pearson 
correlation coefficient = 0.07). (d) Same as c for the avoid 2 dimension (Pearson 
correlation coefficient = −0.07). (e) Relation between magnitude of activity in the 
avoid 1 dimension during task 2 (time-averaged over the 3 s window preceding 
avoid start and averaged over all task 2 avoid trials) and the task 2 shuttle angle 
(see Extended Data Fig. 1d; Pearson correlation coefficient = −0.04). (f) Same  
as e for the avoid 2 dimension (Pearson correlation coefficient = −0.02).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All in vivo calcium imaging data was collected with the Inscopix miniaturized microscope system nVista 2.0. 
All histological images were acquired using a either CLSM - Leica Stellaris 5 upright microscope equipped with an HC PL APO CS2 20x 0.75 IMM 
0.66 objective (data acquisition software used was LAS X) or an Olympus fluorescence microscope (BX51). 
All behavior videos were acquired using two top view B/W cameras (DMK 23FV024; ImagingSource) and custom written MATLAB code 
(2016a).

Data analysis For all imaging data analysis we used the MATLAB programming environment (2016a) and developed custom code for (1) the imaging data 
preprocessing, (2) for the cell extraction, (3) for the joint subspace alignment across all mice and (4) for the population data analysis. For 
motion correction of the calcium imaging movies we used the Turboreg software. For tracking of the animals we used the DeepLabCut 
software. All code required to reproduce the findings of the paper is available at https://zenodo.org/records/11283463.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The source data that support the findings of this study are available at https://zenodo.org/records/11282437. The raw imaging data will be made available upon 
reasonable request.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected based on previous experience from related research and literature: 
- Hippocampus and cognitive control group size n = 8 - 12 (Chung et al., 2021) 
- ACC and avoidance behaviour group size n = 7 - 14 (Lee et al., 2019) 
- Amygdala and stated dependent flexibility group size n = 10 (Fustiñana et al., 2021) 
- Neural ensemble dynamics in the amygdala group size n = 8-12 (paper from study director: Grewe et al., 2017)

Data exclusions In accordance with the animal welfare regulations, we had to terminate the behavior experiments for 6 mice because they did not learn the 
task sufficiently (performance below 50% after 3 days of training). We excluded 8 imaging sessions (from a total of 132, 12 mice x 11 days) 
because we could not align the recorded frames to frames from previous sessions (see Supplementary Movie 4, Fig. S3B).

Replication Results that are displayed using representative examples and were not statistically evaluated (Extended Data Fig. 2C-D and Extended Data Fig. 
3A) were repeated multiple times and we ensured that all repetitions produced qualitatively similar results.

Randomization We did not randomize as we only had one group of animals that we recorded from.

Blinding B.E. alone performed all animal experiments. Since animals need to be prepared and handled individually and due to the nature of the 
experiment a blinding of the experimenter was not possible.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used rabbit anti-GAD65 (1:500, AB1511, Millipore) 

rabbit anti-Neurogranin (1:2000, 07-425, Millipore) 
Alexa 594 anti-rabbit (1:200, A-11062, Invitorgen) 
DAPI (1:1000, D1306, Invitrogen) 
Nissel stain (NeuroTrace 530/615, N21482, Invitrogen)

Validation Antibodies were chosen based on a literature review for each antibody to identify the best candidate for our experiments. Validation 
was determined by reviewing the manufacturer's literature, other published research, and prior experiments in the lab. For each 
experiment, at least one slide was designated for a "secondary only" control and examined for potential background staining. 
Commercial antibodies were validated by the manufacturer: 
rabbit anti-GAD65 www.merckmillipore.com/CH/de/product/Anti-Glutamate-Decarboxylase-65-67-Antibody,MM_NF-AB1511 
rabbit anti-Neurogranin https://www.merckmillipore.com/CH/de/product/Anti-Neurogranin,MM_NF-07-425-I-100UG 
Alexa 594 anti-rabbit www.thermofisher.com/antibody/product/Rabbit-anti-Mouse-IgG-H-L-Cross-Adsorbed-Secondary-Antibody- 
Polyclonal/A-11062 
DAPI www.thermofisher.com/order/catalog/product/D1306 
Nissel stain www.thermofisher.com/order/catalog/product/N21482

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Experiments were performed on adult male C57BL/6J Crl1. Mice were 10-17 weeks old at the time of the virus injection surgery and 
20–32 weeks old during in vivo imaging and behavioral experiments. Animals were housed in individually ventilated cages (IVC) in a 
12 h light/dark cycle room (lights on from 7:00 to 19:00, ambient temperature: 21-24°C, humidity: 35-70%), and were provided food 
and water ad libitum. After import from the breeders, mice were given a 2 weeks acclimatization period to the new housing 
condition prior to the first surgery. During the experiments mice were kept in groups of 2 to 5 animals.

Wild animals No wild animals were used in the study.

Reporting on sex We report the sex of all animals used for this study in the methods section (all male).

Field-collected samples No field collected samples were used in the study.

Ethics oversight All animal well-fare and ethical aspects of our study were evaluated by the Swiss Cantonal Veterinary office and approved,.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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