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The medial prefrontal cortex (mPFC) has been proposed to link sensory
inputs and behavioral outputs to mediate the execution of learned
behaviors. However, how such a link isimplemented has remained unclear.
To measure prefrontal neural correlates of sensory stimuli and learned
behaviors, we performed population calcium imaging during anew
tone-signaled active avoidance paradigm in mice. We developed an analysis
approachbased on dimensionality reduction and decoding that allowed

us to identify interpretable task-related population activity patterns.

While alarge fraction of tone-evoked activity was not informative about
behavior execution, we identified an activity pattern that was predictive of
tone-induced avoidance actions and did not occur for spontaneous actions
with similar motion kinematics. Moreover, this avoidance-specific activity

differed between distinct avoidance actions learned in two consecutive
tasks. Overall, our results are consistent with amodel in which mPFC
contributes to the selection of goal-directed actions by transforming
sensory inputs into specific behavioral outputs through distributed
population-level computations.

Learning to appropriately respond to sensory information that is pre-
dictive of threats or rewards is a vital skill for every animal. This learn-
ing process depends on a network of interconnected brain regions
involvedindiverse functions such as sensory processing, the learning of
stimulus-outcome associations and behavioral execution. Inrodents, the
medial prefrontal cortex (mPFC) has beenimplicated in linking sensory
information toappropriate actions during learningand behavior execu-
tioninvarious forms of conditioning’. Specifically, nPFC neurons acquire
strongand temporally precise responses to behaviorally relevant stimuli
overlearning' . Moreover, optogenetic manipulations of prefrontal activ-
ity candriveand/orinhibit behavioral executioninavariety of paradigms,
such as fear conditioning* ¢, active avoidance™, reward-based condi-
tioning®’ and conditioned place preference'®. Additionally, mPFC has a
crucial role in the selection between different response options™ and in
switching between different learned stimulus-response associations™ .

While it is well established that behaviorally relevant sensory
stimuli can elicit mPFC activity and that such activity can influence
behavior, it is still unclear (1) how sensory-evoked mPFC activity
is locally organized and transformed to drive specific actions and
(2) how such transformations are updated to enable behavioral flex-
ibility. Investigating these questions has been challenging due to
the properties of mPFC neural activity and the limitations of tra-
ditional experimental strategies and analysis approaches. First,
learned, action-related activity is hard to distinguish from the pro-
nounced general motion-related activity found in mPFC"™. Second,
stimuli and behavioral responses often show a temporal overlap
inherent to task design, complicating the isolation of sensory- and
behavior-related neural activity. Third, prefrontal neurons might
show mixed selectivity for multiple task variables™. Finally, due to this
temporal and spatial mixing, optogenetic approaches have limited
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Fig.1| The two-dimensional active avoidance paradigm and recording of
prefrontal population activity. a, Task schematic and time course of the 11-day
learning paradigm. Tasks 1and 2 are defined by shuttling along the x and y axes
ofthe shuttle box, respectively. b, Trial structure and illustration of the different
trial types (avoid and error). ¢, Percentage of successful avoid trials per active
avoidance session (n =12 mice, mean +s.e.m.). d, Shuttle rates for X shuttle
(solid line) and Y shuttle (dashed line) across 11 days of learning (n = 12 mice,
mean +s.e.m.). e, Miniaturized (single photon) population calcium imaging

in freely behaving mice. GCaMP6m was genetically expressed in pyramidal
neurons, and a GRIN lens was implanted above the PL. Scale bar: 1 mm. f, Cell
map of an example animal. Scale bar: 100 pm. g, Calcium fluorescence traces of
ten example neurons on days1, 6 and 11. h, Top, mouse speed for five exemplary
avoid trials including markers for three reference time points (tone start,

shuttle start and tone end). Bottom, distributions of latencies from tone start
toshuttle start and shuttle start to tone end over all avoid trials (days 2-9,

12 mice). i, Top, calcium fluorescence traces of one example neuron aligned to
tone start (left) or shuttle start (right). Trials are sorted according to trial length.
Bottom, trial-averaged neuronal activity of the same neuron. j, Percentage of
trial-responsive neurons across 11 days of learning (n =12 mice, mean + s.e.m.).
See Methods for the definition of trial-responsiveness. k, Overlap of trial-respon-
sive subpopulations across 11 days, where the overlap between daysiand jis
defined as n;,qq;/((n; + n,)/2).1, Trial-averaged response of four example neurons
aligned to tone start (left) or shuttle start (right). OFC, orbitofrontal cortex;

IL, infralimbic cortex; PL, prelimbic cortex; D1, day 1; D2-D4, days 2-4; D5-D9,
days 5-9; D10-D11, days 10-11.

ability to manipulate specific task-related signals as these do not
necessarily align with cell types or projection-specific subpopulations
that could be targeted selectively.

Here we addressed theseissues by performing large-scale neuronal
recordings during amouse active avoidance paradigm with changing
contingencies between stimulus and conditioned responses. This
experimental approach, combined with a new data analysis pipeline,
allowed us toisolate neural correlates of individual task variables and
to study changes in the neural correlates of stimuli and behaviors
throughout learning.

Results

A new active avoidance paradigm allows linking a sensory
stimulus to two different behavioral responses

We first developed a new 11-day instrumental conditioning paradigm
for mice that we refer to as two-dimensional active avoidance. The
paradigm consisted of habituation (day 1), active avoidance training
(days 2-9) and extinction (days 10-11; Fig. 1a). Each session comprised
50 trials, each starting with the presentation of a tone (maximum dura-
tion: 10 s, 80 dB, 8 kHz). In active avoidance sessions, the tone was
followed by an aversive foot shock (maximum duration: 5s, 0.2 mA).
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On each trial, we defined a safe zone that covered half of the chamber
and whose location depended on the position of the mouse at the trial
startand the task type (see below). Mice could avoid the shock by mov-
inginto the safe zone during the tone presentation, whichimmediately
terminated the trial (Fig. 1b). On days 2-4, mice wererequired to shuttle
along the x axis of the box to reach the safe zone (Fig. 1a (task 1) and
Supplementary Video1). To study whether and how subjects could flex-
ibly adapt theiravoidance behavior, days 5-9 required shuttling along
the perpendicular y axis (Fig. 1a (task 2) and Supplementary Video 1).
If mice did not shuttle into the safe zone during the tone, the shock
was delivered and two of the four movable platforms were elevated
to mark the safe zone and to allow the animals to escape the shock by
jumping on the platform (Methods). Trials in habituation and extinc-
tion sessions (days 1,10 and 11) included tone presentations, but no
shock presentations. For each trial in these sessions, the definition of
the safe zone was randomly chosen to follow the logic of either task 1
or 2. As for the learning sessions, the tone was shut off or platforms
wereraised depending on the animal’sbehavior. Inthe following text,
werefer to trials that were terminated by the execution of the correct
shuttle action during the tone as avoid trials and to trials thatincluded
ashock presentation as error trials (Fig. 1b). During task 1, the propor-
tion of avoid trials increased from 40 + 4% to 84 + 2% (mean + s.e.m.;
Fig.1c). After the task switchonday 5, performance dropped to 44 + 6%
butrecovered to 81+ 4% by the end of task 2. This recovery was based
on mice adjusting their shuttle behavior toward the correct direction
(Fig.1d and Extended Data Fig.1). While the Y-shuttling rate increased
from19 + 6%to 81 + 4% between days 4 and 9, X-shuttling concurrently
dropped from 84 +2%t0 27 + 4%.

To investigate the neural correlates of the learned avoidance
behaviorsin mPFC, we expressed the genetically encoded calciumindi-
cator GCaMPém inexcitatory neurons of the prelimbic area (Fig. leand
Extended Data Fig. 2) and used miniaturized fluorescence microscopy
toimage population activity in freely behaving mice (Supplementary
Video2). Thisallowed us to record and track the activity of 3,333 mPFC
excitatory neuronsin12mice (278 + 50 neurons, mean + s.d. over mice)
throughout the whole 11-day paradigm (Fig. 1f,g and Extended Data
Fig.3and 4).

To analyze the recorded neural activity during avoid trials, we
first aligned recordings to the following two key events within each
trial toaccount for trial-to-trial variability: tone start and shuttle start
(Fig. 1h). In awindow around these alignment time points, sensory
stimulation and behavior were consistent over trials, such that we
could compute trial averages and jointly analyze neural responses
frommultiple trials (Fig. 1i). We found that during active avoidance ses-
sions, 54 + 3% (mean = s.e.m.,n =12 mice) of all recorded cells showed
significantly different activity during the trial window (tone start to
shuttle start) as compared to baseline periods (Fig. 1j). This fraction
was substantially lower in habituation (15 + 1%) and extinction sessions
(26 +3%), and the overlap between the classified cell subsets was high
between avoidance sessions (60 + 2%), but low between extinction
sessions (28 + 5%; Fig. 1k). These results suggest that mPFC is recruited
for sensory processing and/or production of avoidance behavior dur-
ing active avoidance sessions. The responses of individual cells were
highly diverse (Fig.1land Extended DataFig. 5). While some cells” activ-
ity clearly aligned with the tone or the avoidance action, other cells
showed diverse temporal dynamics. Because it was difficult toisolate
neuronal signals specific to the sensory stimulus, motion and avoid-
anceactiononthesingle-celllevel, we next turned to population-level
decoding approaches.

Alignment of neural recordings from different mice into a
jointsubspace

Decoding approaches allowed for identifying and capturing differ-
ences in neural population activity between trial types (for example,
avoidance versus error trials). Generally, such approaches are well
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Fig.2|Subject alignment and prediction of avoidance actions. a, Illustration
of the neuronal subspace alignment procedure across animals (see Extended
DataFig. 6 for details). b, Schematic representation of the decoding approach
to predict avoidance behavior from mPFC neuronal activity. For each time step
(t,, t,, etc.), anindividual decoder (D, to D,) was trained to predict the trial outcome
(avoid or error). ¢, Decoding accuracies across time for decoding of avoid versus
error trials (AV, black) and ITIshuttles versus random ITI periods (ITl, magenta;
mean and 95% Cls for 80 repetitions of the analysis using different samples of
trials; Methods). Black bar indicates significant differences between the AV and
ITIsettings based on nonoverlapping Cls. d, Same as ¢, but for decoders trained
using the animals’ speed extracted from video tracking data.

suited in settings where the number of samples (here trials) exceeds
the number of dimensions (here cells). Intypical neuroscience settings,
however, werecord high-dimensional neural signals (many cells), but
only have a few behavioral trials per subject. To facilitate decoding
analyses, we asked if we could jointly analyze trials of different subjects
inalow-dimensional coding subspace thatis aligned between subjects
(Fig.2a). This approachrequired the recorded neural activity to have
the following two properties: (1) the high-dimensional recordings can
be well described by low-dimensional trajectories in the state-space
spanned by the recorded cells and (2) the task-related neural activity
follows similar dynamics over subjects. Using a dimensionality reduc-
tionand alignment procedure (detailsin Methods), we confirmed that
our data satisfy these two properties (Extended Data Fig. 6). We cal-
culated task-related neural activity for all cells as event-aligned activ-
ity averages for avoid trials, error trials and shuttles in the intertrial
interval (ITI; Extended Data Fig. 6a). We first showed that for individual
subjects, more than 90% of the neural variability could be explained
by lessthan15dimensions (Extended Data Fig. 6d (orange line)). Next,
we showed that by aligning the state-spaces of individual subjects we
could define one single joint subspace that shows only slight decreases
inexplained variance in comparison to the subject-specific subspaces
(Extended Data Fig. 6d (black line)). The fact that a single joint sub-
space can capture variability for all subjects shows that task-related
neural dynamics are highly similar between subjects. Finally, we quan-
tified the alignment quality for the individual dimensions of the joint
subspace and found that a ten-dimensional subspace constitutes a
good tradeoffbetween alignment quality and a fraction of explained
variance (Extended DataFig. 6e,f). In the following, we thus jointly
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Fig.3 | Decomposition of mPFC population activity into dimensions related
tomotion, avoidance actions and tone stimuli. a, Mean accuracy of neural
decoders for ITI (left) or avoid shuttles (right) after the progressive removal of up
to four motion dimensions (n = 80 repetitions). b, Drop in time-averaged accuracy
(-3stols)ofITland avoid decoders from a with respect to the baseline setting

(0 dimensions removed). ¢, Mean accuracy of neural decoders for ITI (left) or
avoid shuttles (right) after the progressive removal of up to four avoid dimensions
(n=80repetitions).d, Drop in time-averaged accuracy (-3 sto1s) of ITland

avoid decoders from c. e, Schematic representation showing the progressive

Removed dims.

decomposition of the joint subspace into five coding dimensions and a residual
space.f, Schematic representation illustrating tone versus BSL decoding. g, Tone
decoding accuracies after progressive removal of up to two-tone dimensions.

h, Dropintime-averaged tone decoding accuracy (0-4 s) of the decoders from
gand dropin VE for the respective decoding dimensions.Inb,dand h, lines and
shaded areas correspond to mean and 95% Cls for 80 repetitions, and vertical
dotted lines correspond to the number of dimensions chosen for the subspace
decomposition. Black bars in b and d indicate significant differences between the
AV and ITI settings based on nonoverlapping Cls. BSL, baseline.

analyze neural datafromall subjects and perform decoding analyses
inthe ten-dimensional subspace.

Avoidance-related activity is distinct from activity related to
general motion

To test if mPFC population activity contained predictive information
about upcoming avoidance actions, we trained decoders to discrimi-
nate neural activity datafrom avoid and error trials projected into the
joint subspace (Fig. 2b). To capture dynamical processes during the
trial, we trained individual support vector machine (SVM) decoders for

every time step on temporally aligned trials. We aligned the avoid trials
using the shuttle startasthe alignment point. For error trials, however,
thisalignment point does not exist. We thus sampled an alignment point
foreacherror trial (pseudoshuttle start), such that the distribution of
trial lengths (Fig. 1h) matched the one of avoid trials. This prevented
the trial length from being informative about the trial type.
Consistent with previous work®, we found that decoding accu-
racy increased toward the shuttle action and was above chance levels
before shuttle start (Fig. 2c), indicating that mPFC population activity
contained predictive information about avoidance actions. To test if
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this effect was specific to avoidance actions or was rather a general
property of the shuttle motion, we trained an additional set of SVM
decoders to discriminate between spontaneous shuttles in the ITI
versus randomly sampled ITI periods (Fig. 2c). To ensure that accuracy
differences between avoid shuttle and ITI shuttle decoding could not
be explained by differences in motion kinematics, we chose ITI shut-
tles such that the predictive information contained in the associated
motion tracking data was comparable to avoid shuttles (Extended
Data Fig. 7). We quantified this predictive information by training a
set of decoders using video tracking data (Fig. 2d), which showed no
difference between the AV (avoid) and ITI settings (as intended by the
procedure detailed in Extended Data Fig. 7). In contrast, for neural
decoders (Fig. 2¢), ITI decoding accuracies were lower than for the
avoid versus error setting, although they also exceeded chance levels.
Together, these findings show that mPFC activity encodes information
about upcomingavoidance actions, which cannot solely be explained
by correlates of general motion. However, it remains unclear how the
neural correlates of avoidance and motion relate to each other. We
thus next assessed whether we could disentangle these signals during
avoidancetrials.

The factthatdecoding performanceis higher for the avoid setting
thantheITIsetting suggests that,in additionto the predictiveinforma-
tion related to the shuttle motion (present in ITI and avoid settings),
there exists predictive information in neural activity thatis specific to
avoidance actions. We thus hypothesized that the predictive perfor-
mance of avoid and ITI decoders was based on different population
activity patterns. To test this hypothesis, we first used principal compo-
nent analysis (PCA) toidentify dimensions containing motion-related
activity as the dimensions of maximal variance during ITI shuttles
(Extended DataFig.8a-d). Next, we tested how removing these motion
dimensions from the joint subspace affected decoding performance
inthe ITland avoid settings. We removed motion dimensions by pro-
jecting trial data from the joint subspace into the nullspace of the
considered motion dimensions. We found that removing two motion
dimensions led to the largest relative drop in ITI decoding accuracies
andthatthe decreasein predictive accuracy was substantially lower for
avoid versus error decoding (Fig. 3a,b). These results show that most
of the motion-related activity is contained in a low-dimensional sub-
space and thatavoidance decoding does not depend on activity in this
subspace. Thus, there must be avoidance-specific activity in different
dimensions, and we next asked if we could capture these dimensions
in the remaining neuronal subspace (that is, the nullspace of the two
identified motion dimensions).

To identify avoidance-specific coding dimensions, we devised
aniterative approach based on decoding (Extended Data Fig. 8e-h).
We first projected all trial data into the motion nullspace (using two
motion dimensions) to remove predictive information related to
motion. Next, we trained a time-independent SVM decoder to dis-
criminate between avoid and error trials and interpreted the projec-
tion axis of the decoder as an avoid dimension. To find additional
avoid dimensions, we again projected trial data into the nullspace of
the identified avoid dimension and repeated the process. We again
evaluated the removal of the identified avoid dimensions for the ITI
and avoidance settings and found that the removal of the first two
avoid dimensions strongly reduced performance in the avoid versus
error setting but not the ITI setting (Fig. 3c,d). Taken together, these
results show thatitis possible toidentify alow-dimensional subspace
containing avoidance-specific activity, which is orthogonal to the
dimensions containing motion-related activity.

mPFC population activity can be decomposed into
interpretable, orthogonal dimensions

Inaddition toavoidance and general motion, tone stimuli are akey vari-
able during active avoidance trials. We thus asked if we could identify
tone-related activity in the nullspace of the four identified motion

and avoidance dimensions (Fig. 3e). We first trained SVM decoders to
discriminate between tone (during avoid and error trials) and nontone
(during ITI) time periods (Fig. 3f). We found that shortly after tone
onset, the decoding accuracy was consistently above 80% (Fig. 3g),
indicating the presence of a reliable tone representation during the
trial. Toinvestigate the dimensionality of this tone representation, we
again tested the effect of iteratively removing tone decoding dimen-
sions. Removing the first dimension decreased the mean accuracy
from 79.9% (95% confidence interval (CI) (78.5, 80.9)) to 63.3% (95%
CI (57.8, 67.0); Fig. 3h). While this first dimension did not contain all
tone-related information, it captured the majority (80.5% (95% CI (65.8,
92.3))) of the remaining variance in the joint coding subspace, whereas
subsequent decoding dimensions were limited to 12.6% (95% CI (2.0,
29.0)) orless (Fig. 3h). We therefore focused on this one-tone dimension
in subsequent analyses. Taken together, the decomposition of mPFC
neuronal activity into five orthogonal dimensions (motion1, motion2,
avoid 1, avoid 2 and tone) constitutes a compact and interpretable
representation of task-related neural activity.

To analyze how population activity in the five coding dimensions
evolvesover the trial, we projected the activity into each of these dimen-
sions (Fig. 4a (top row) and Extended Data Fig. 9). We found that during
avoid and error trials, the activity in the two motion and the two avoid
dimensions followed similar trajectories (Fig. 4d; Pearson correlation
coefficient = 0.88 + 0.06, mean * s.d. over six comparisons). Activity
in these four dimensions was low at the tone start, with no differences
between avoid and error trials. Activity then ramped up toward the
start of the avoidance shuttle, with a stronger increase in avoid trials
compared to error trials. In contrast, activity in the tone dimension
was strongly affected by tone onset and exhibited similar trajectories
for avoid and error trials up to shuttle start. Overall, the five coding
dimensions captured 91.9% (95% C1(86.0, 96.6)) of the variance, show-
ing that our subspace decomposition did not miss any major sources
of activity in the avoid and error trial averages (Fig. 4b). Despite the
similarity of the temporal evolution of activity in the motion and avoid
dimensions during the trial, there were clear differences between these
dimensions for ITI shuttling (Fig. 4a (bottom row)). Activity in the
motion dimensions increased around the ITI shuttle start in a similar
way to the avoid shuttle start. The two motion dimensions accounted
for94.0% (95% C1(93.1,95.1)) of the variance in the population activity
averaged over ITI shuttles (Fig. 4c). In contrast, the avoid dimensions
only explained 2.6% (95% C1 (1.7,3.2)) of the variance, as activity was not
strongly affected by ITIshuttles. Taken together, these results show that
asubstantial fraction of the behavior-related neural variability during
avoid trials is not contained in the dimensions that capture motion
in the ITI but rather in avoidance-specific dimensions. Nevertheless,
within the two motion dimensions, activity is similar between avoid
and ITI shuttles, suggesting that these dimensions capture motion
irrespective of behavioral context.

To assess how the five coding dimensions relate to the activity
of individual cells, we calculated dimension weight vectors for indi-
vidual subjects by mapping the subject-specific projection matrices
from the subject alignment procedure (Extended Data Fig. 6b) onto
the five coding dimensions. To quantify how a given cell contributed
to the activity in the five coding dimensions, we normalized the five
weight values such that the sum of their absolute values was equal to
1 (Fig. 4e). We then calculated the entropy of this distribution over
the five dimensions to measure if cells were selective to anindividual
dimension (low entropy) or contributed to multiple dimensions
(high entropy). The distribution of entropy values of all recorded
cells shows that the vast majority of cells displayed mixed selectiv-
ity to multiple dimensions, while only a few cells were selective to an
individual dimension (Fig. 4f). These results suggest that the signals
in the identified coding dimensions are carried by a population of
mixed-selective cells rather than by different subpopulations coding
forindividual dimensions.
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We next asked, how the activity in the five-dimensional coding
space evolved over our learning paradigm by analyzing projections cal-
culated for different phases of the experiment (Fig. 5a-c and Extended
DataFig.10). Motion-related activity dominated the neural variability
inhabituation and extinction sessions but had areduced relative con-
tribution during active avoidance sessions (63.3% (95% C1 (59.4, 67.4))
versus 36.1% (95% CI (35.0, 37.0)) variance explained (VE); Fig. 5¢). In
contrast, tone-related and avoidance-specific activity emerged in
active avoidance sessions (51.4% (95% CI (46.6, 55.0)) VE versus 10.1%
(95% CI(5.8,16.1)) in habituation; Fig. 5c), indicating that these activity
patterns are learned and task-related. These results show that mPFC
activity is engaged during active avoidance learning and develops
responses to behaviorally relevant sensory stimuli as well as activity
specific to avoidance actions.

Avoidance-specific activity distinguishes between tasks
The avoid dimensions seemed to be differently engagedintasks1and 2,
suggestingatask-related changeinavoidance-specificactivity (Fig.5a-c).
Based on this observation, we further investigated the avoid versus
error decoders that we initially used to define the avoid 1 and avoid 2
dimensions (Fig. 3 and Extended DataFig. 8). To assess time-dependent
changesinthe decoders’ ability to discriminate avoid and error trials,
we trained the decoders using data from all avoidance sessions but
tested them using data splitinto individual sessions (Fig. 5d,e). We
found that the avoid 1 decoder worked best in task 2 sessions but also
showed above chance performance in task 1 (Fig. 5d). In contrast, the
avoid 2 decoder performed above chance level in task 2, but not in
task1(Fig.5e). This differencein decoding performanceindicates that
avoid lactivity generalizes to both avoidance behaviors, while avoid 2
emerges with the task switch to accommodate the altered avoidance
behavior in task 2. Taken together, these results suggest that the task
switch changes the mPFC coding of the avoidance action by layering
additional avoidance-specific activity.

Totest whether the task-related changes were specific to the avoid
2 dimension or also affected other dimensions, we explicitly tested
for task-based differences using an additional decoding analysis. We

first trained decoders to discriminate trial data from tasks1and 2 (task
decoding; Fig. 6a), analogously to avoid versus error decoding. We
trained independent sets of time-dependent task decoders for avoid
trials, error trials and ITI shuttles (X shuttles in task 1 and Y shuttles
in task 2) based on the activity in the five-dimensional coding space
and found that task-decoding accuracy differed between the three
settings (Fig. 6b,c). Task decoding was more accurate for avoid trials
thanfor errortrials or ITIshuttles (Fig. 6¢). During avoid trials, decod-
ing accuracy ramped up toward avoidance actions (Fig. 6b). These
dynamics were less pronounced on error trials, indicating that the
task switch did not affect task-related neural activity in general, but
specifically altered the neural dynamics related to the execution of
avoidance actions. Although task-decoding accuracy for ITI shuttles
alsoincreased toward the shuttle action, the performance was gener-
ally lower than for the avoid setting. This suggests that task-decoding
in avoid trials was predominantly based on avoidance-specific rather
than motion-related activity.

To further investigate how task-specific information was distrib-
uted, we next trained individual task decoders for the five coding
dimensions. We found that the avoid 2 dimension achieved the high-
est task-decoding accuracies in the avoid, but not in the error and ITI
settings (Fig. 6d). These results show that the task-related change in
avoidance behavior is associated with a change in avoidance-specific
activity, suggesting that the updated neural dynamics in mPFC could
be the basis of the change in behavior.

Thetask switch alters multiple aspects of the behavior—the direc-
tion of the shuttle motion (thatis, a physical feature of the behavior) and
the relation between behavior and trial outcome (that is, an abstract
feature of the behavior determined by task design). We therefore next
asked how the change of these two aspects of the behavior relates to the
observed change in neural activity. Toaddress this question, we made
use of the behavioral variability of task 2 avoid trials (Fig. 6e,f).Intask 2,
avoidance only requires motioninthe ydimension andisindependent
of motioninthexdimension. However, animals frequently performed
shuttles that crossed both the x and y midlines (XY shuttles). Of all of
the 1,624 task 2 avoid trials, 930 were Y shuttles (57.3%) and 694 were
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Cls for 80 repetitions). Decoders were trained with data from tasks1and 2 and
separately evaluated with test data from individual days. The black bar indicates
performance that is significantly above chance based on 50% not being included
inthe Cl. e, Same asd, but for the decoder that was used to define the avoid 2
dimension (the avoid 1 dimension was already removed). T1, task 1; T2, task 2.

XY shuttles (42.7%). In terms of their motion kinematics, task 2 XY
shuttles differ from both task 1 X shuttles and task 2 Y shuttles. In the
abstract view of the task design, however, they only differ from task 1
Xshuttlesbut not fromtask 2Y shuttles. To test how this was reflected
in the activity in the identified coding dimensions, we again trained
decoderstodistinguish between the different shuttle types. We found
that decoders were substantially more successful in distinguishing task
2 XY shuttles fromtask 1X shuttles than fromtask 2 Y shuttles (Fig. 6e).
We also found that, for the task 1X shuttle versus task 2 XY shuttle set-
ting, the avoid 2 dimension carried more information than any of the
motion dimensions (Fig. 6f (left)). In contrast, for the task 2 Y shuttle
versus task 2 XY shuttle setting, the motion1dimension contained more
information than any of the avoid dimensions (Fig. 6f (right)). Taken
together, these results suggest that the task-related difference in the
avoid 2 dimension (Fig. 6f) cannot solely be explained by differences
in motion and are thus based on the abstract task-related difference
between the two actions.

mPFC sensory responses are modulated by avoidance
behavior

Our subspace decomposition analysis shows that tone-related and
avoidance-specific activity can be decomposed into independ-
ent dimensions. Yet, we also observed that the activity in the tone

dimension was modulated by the execution of avoidance actions
(Fig. 7). In general, tone dimension activity was well correlated with
the binary tone on/off timing for individual subjects (Fig. 7a; Pearson
correlation coefficient = 0.62 (95% C1 (0.60, 0.63)), average over sub-
jectsandactive avoidance sessions, mean and Cl over 80 repetitions).
However, we observed an exception at the time of shuttle start, where
the tone signal dropped two time steps (400 ms) after shuttle start
(Fig. 7b), although the tone only turned off approximately 1 s after
shuttle start when the action was completed (Fig. 1h). Alignment to the
end of the tone showed that the drop of activity in the tone dimension
occurred three time steps (600 ms) before the actual offset of the tone
(Fig. 7c). To further examine the interaction between the tone dimen-
sion and the execution of the tone-induced shuttle behavior, we next
focused on a particular trial set from the transition period between
tasks1and2.Inearly task 2 trials, mice performed X shuttles aslearned
intask1, which, however, did not lead to avoidance anymore in task 2.
During these task 2 X shuttles, we observed a similar drop in the tone
dimension activity aligned to action onset, despite the continued tone
presentation (Fig. 7d,e). At1.2 s after action onset, the tone dimension
activity was decreased by 36.7% (95% Cl (28.8, 43.5)) as compared to
trials without shuttle actions. These results suggest that the mPFC tone
representationis modulated by the execution of the learned behavior
that has been associated with the termination of the tone and the avoid-
ance of the shock.

Discussion

In this study, we developed a new two-dimensional active avoidance
paradigm and combined it with large-scale neural recordings in mouse
mPFC and anew data analysis approach. This allowed us toidentify and
characterize mPFC neural correlates of sensory stimuliand avoidance
actions and to study them over learning. We show that the recorded
high-dimensional population activity can be decomposed into five
interpretable orthogonal dimensions encoding motion, tone and avoid-
ance. Notably, our approach allowed us to distinguish between learned
avoidance-specificactivity and activity related to general motion. We
show that these signals exhibit similar dynamics during active avoid-
ancetrials but behave differently during the ITI. Inaddition, we found
thatactivity intone and avoidance dimensions emerges with learning
and disappears againin extinction sessions, consistent withamodelin
whichmPFCuses sensory-driven responses to drive behavior execution.
Moreover, one of the identified avoidance dimensions discriminated
betweenthe two avoidance tasks and only emerged in the second task.
Thissuggests that the mPFC represents behaviors with sufficient resolu-
tion to enable linking stimuli to specificbehavioral responses. Interest-
ingly, we found that the execution of avoidance behaviors suppressed
sensory-related activity, suggesting that mPFC sensory representations
alsodepend onthe behavior of the animal. Overall, these results point
toward the mPFC implementing the sensory-behavior link through
dynamically interacting neural correlates that represent essential task
features and are contained within a low-dimensional subspace of the
overall population activity.

Theinterpretation of neural activity during active avoidance trials
is challenging due to the temporal overlap of sensory stimuli, cognitive
processes and motor signals, as well as mixed selectivity to these sig-
nals. We addressed these challenges by combining several data analysis
steps that allowed us to identify and isolate distinct and well-defined
neural correlates at the population level. First, we used aprocedure to
align the neural responses recorded from different subjectsinto ajoint
codingsubspace?. This allowed us to jointly analyze all recorded trials
and to use SVM decoders to accurately identify the subspace dimen-
sionsthat contained avoidance-specific (Fig. 3c) and tone-related activ-
ity (Fig. 3g). An often-used and powerful alternative for relating neural
activity to task variablesis the use of regression-based approaches' ",
However, in the setting of multiple temporally correlated predictor
variables (such asmotion, avoidance and tone), itbecomes challenging
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tospecify aregression model that properly isolates these variables. Our
decomposition approach allowed us to sequentially identify meaning-
ful dimensions using suitable decoding settings, and the nullspace
projections ensured that the resulting coding spaceisolated individual
featuresin orthogonal dimensions (Fig. 3e).

While previous work already showed that mPFC activity contains
avoidance-predictive information®, our approach allowed us toidentify
and characterize the activity patterns that carry thisinformation. The
fact that we could identify avoidance-specific activity patterns that
were not present during ITIshuttles (Fig.4a) indicates that these activ-
ity patternsresulted from the processing of tone stimulus information.
Nevertheless, we found that alarge fraction of tone-driven activity was
independent of the execution of avoidance shuttles (tone dimension;
Fig.4a). This suggests that whether or not an animal performs anavoid-
ance action is not based on differences in sensory input to mPFC but
depends on mPFC’s processing of the incoming sensory information.
Furthermore, the activity in theidentified coding dimensions was not
based on distinct subpopulations coding for individual variables but

rather onapopulation of cells showing diverse forms of mixed selectiv-
ity (Fig. 4e,f). This high degree of mixing is consistent with previous
work, which showed that mPFC responses in an approach-avoidance
task show higher degrees of mixed selectivity than basolateral amyg-
dala (BLA) responses?. This mixed selectivity goes along with a higher
representational capacity that may be necessary for behavioral flexibil-
ity?***. Taken together, our results are consistent withamodel in which
sensory-driven mPFC responses partake in a distributed dynamical
process® to drive behavior execution.

Whileour resultsare only correlational, multiple studies have dem-
onstrated the causal role of mPFC in active avoidance”®**?. A recent
study showed that mPFC’s influence on avoidance behavior is medi-
ated by projections to the BLA and nucleus accumbens’. Additionally,
Kajs etal.”® used fiber photometry recordings to show that populations
of cells projecting to the BLA and the striatum differentially encode
avoidance actions. Such projection-specific differencesin mPFC activ-
ity have also been shown to be important for various other tasks®'**’.
How the high degree of mixed selectivity we observed at the single-cell
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of neural data onto the tone dimension during avoid trials aligned to tone start
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the time step before the maximum decrease of tone dimension activity between
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level maps onto such activity differences in projection-specific sub-
populations remains to be studied™.

In our study, we only record from excitatory cells, but inhibitory
activity is crucial tounderstanding the transformation from stimuli to
behaviorsin mPFC. For example, mPFCinhibitory signals are required
for avoidance®, and in fear conditioning, mPFC inhibitory neurons
are important for temporally structuring the activity of pyramidal
neurons*®, Furthermore, specificinterneuron types encode different
task-related signals®, and it will be interesting to see how these are
related to the diversity of responses of the pyramidal cells we report
inthis study.

Our result that activity in the tone dimension is modulated by
behavior execution (Fig. 7) indicates that tone-driven mPFC signals are
not purely sensory but are modulated by the behavior of the animal.
The drop in tone-driven activity at action onset, despite continued
sensory input, indicates a change in information flow induced by the
execution of the learned avoidance action. However, it is unclear what
causes the observed drop in activity. A recent study demonstrated
the learned suppression of auditory cortex activity in response to
movement-related sounds throughinhibition viamotor cortex inputs™.
In mPFC, another potential substrate for the observed tone signal

dynamics is the bidirectional interaction with the BLA. mPFC tone
responses are dependent on inputs from the BLA®. Furthermore, the
BLAis generally required for avoidance learning® but is also involved
in the expression of avoidance behavior”**. These results highlight
the complex interaction between sensory processing and behavior
execution, and further work is needed to understand the temporal
dynamics of sensory information flow through the network of involved
brainareas.

Finally, the switch between the two active avoidance actions (X and
Y shuttling) allowed us to study behavioral flexibility in mPFC. mPFC
has previously been shownto be involved in switching between tasks or
rules®®*, and our results offer new insights into how behavior-related
neural activity is updated upon a switch between conditioned behav-
ioral responses. We found that avoidance-specific activity was organ-
ized into two dimensions, where one was general to both avoidance
behaviors (avoid 1) and the other was specific to shuttling along the
Y dimension and only emerged in task 2 (avoid 2; Figs. 5 and 6). Nota-
bly, our analysis of X, Y and XY shuttles (Fig. 6e,f) demonstrates that
the change in the avoid 2 dimension cannot be explained by the mere
change of the shuttle directionbutisinstead amore abstract reflection
ofthe changed task contingency and the required update of the learned
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sensorimotor transformation. The sequential layering of previously
learned transformations and the newly added dimensions might help
animals not only to maintain the memory of previously learned tasks
butalsotoshift between tasksinacontext-dependent manner. Infact,
the similar temporal dynamics of activity in motion and avoidance
dimensions (Fig. 4a,d) could indicate that, with progressive learning,
new correlates of avoidance behavior are derived from either naive or
previously learned behavioral primitives. The high level of mixed selec-
tivityin mPFC should greatly facilitate such layered learning, and future
work shouldinvestigate how context-specific recombination of sensory
and behavioral neural correlates might facilitate behavioral flexibility.
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Methods
Allanimal procedures and experiments were approved by the Cantonal
Veterinary Office in Zurich, Switzerland.

Subjects

All experiments were performed on male C57Bl16/Crll mice (Charles
River Laboratories) aged between 4 and 7 months at the start of the
behavioral experiment. Animals were housed inindividually ventilated
cagesinal2-hlight/12-h dark cycleroom (lights on from 6:30 t0 18:30,
ambient temperature: 21-24 °C, humidity: 35-70%) and were provided
food and water ad libitum. Afterimport from the breeders, mice were
given a 2-week acclimatization period to the new housing condition
before the first surgery. During the experiments, mice were kept in
groups of two to five animals.

Surgical procedures

Anesthesia. For all procedures, including anesthesia, mice received
pre-emptive buprenorphine (Bupagq; Streuli, 0.1 mg kg™) 20-30 min
before anesthesia. Anesthesia wasinduced with aKetamine-Xylazine
cocktail (Ketanarcon; Streuli, 90 mg kg™/Xylazin; Streuli, 8 mg kg™),
and mice were mounted onto a stereotactic frame (KopfInstruments).
Duringthe procedure, mice received 95% medical O, (PanGas, Conoxia)
through a face mask, and their body temperature was kept steady at
37 °Cusing atemperature controller and a heating pad.

Viral injections. At the time of the first surgery, mice were 8-13
weeks old. To label excitatory neurons in the prelimbic cortex, we
intracranially injected 500 nl (titer: 4 x 10™) of an adeno-associated
virus driving the expression of GCaMP6m via the CamKII-promoter
(AAV2/5-CamKIlla-GCaMP6m) into the prelimbic cortex (anterior-
posterior, 1.8; medial-lateral, 0.4; dorsal-ventral, 2.1). We used either
amicropump (UMP3 UltraMicroPump; World Precision Instruments)
or aborosilicate glass pipette with a 50 um diameter tip and injected
the virus by applying short pressure pulses at a speed of approxi-
mately 100 nl min™. After injection, the needle/glass pipette wasleftin
place for 5 min to avoid backspill. Finally, the skin was closed using
surgical sutures.

Microendoscope implantation. A total of 7-14 days after the viral
injection, weimplanted asmall stainless steel guide tube (1.2 mm diam-
eter; Ziggy’s tubes and wires) with a customglass coverslip (0.125-mm
thick BK7 glass; Electron Microscopy Sciences) glued to one end as
previously describedinref. 38.In brief, we firstmadeal.2 mmdiameter
(round) craniotomy centered above the ventral-mPFC (1.8 mm anterior,
0.4 mm medial, relative to bregma). To avoid increased intracranial
pressure when inserting the implant, we aspirated tissue down to a
depthof 1.9 mmfromthe skull surface. Next, we lowered the guide tube
to the bottom of the incision (2.2 mmrelative to the skull surface) and
glued the guide tube to the mouse skull using ultraviolet-curable glue
(4305 LC; Loctite). We then applied dental acrylic (Metabond; Parkell
or Scotchbond ESPE; 3M) over the complete cranium and around the
guide tube. Finally, we attached a metal bar and applied dental acrylic
cement (Paladur) to stabilize the implant.

Analgesic regime. For 3 days after each surgical procedure, animals
received buprenorphine subcutaneous (Bupag; Streuli, 0.1 mg kg™)
every 6 h during the light cycle and in the drinking water (Bupagq;
Streuli, 0.01 mg mI™) during the dark cycle, as well as carprofen sub-
cutaneous (Rimadyl; Zoetis, 4 mg kg™) every 12 h.

Preparation of animals for behavioral experiments. Animals received
6-12 weeks of recovery time before testing viral expression levels.
Approximately 1 week before starting behavioral experiments, we
inserted the gradient index (GRIN) lens into the guide tube (GT-IFRL-
100-101027-50-NC; Grin Technologies) and attached a microscope

base plate (Inscopix) above theimplanted microendoscope with blue
light-curable glue (Flow-it; Pentron).

Validation of imaging methodology

Perfusion. After completion of experiments, animals were given ter-
minal anesthesia with pentobarbital (Esconarkon; Streuli,200 mg kg™)
and perfused transcardially with PBS followed by 4% paraformaldehyde
(PFA). Brain tissue was removed and postfixed for 24-48 hiin 4% PFA.
Coronal slices (50-pum thick) were prepared on a vibratome (VT1000
S; Leica) and stored in PBS.

Verification of microendoscopic implant. To confirm the placement
ofthe GRIN Ienses inthe mPFC, cyto-structural differencesin the tissue
were highlighted using Nissl stain (NeuroTrace 530/615; Invitrogen)
following the provided protocol from Invitrogen with a dilution of 1:50
NeuroTrace. Slices containing the prefrontal cortex were mounted,
andimages were acquired using a fluorescence microscope (Olympus,
BX51). Images were overlaid using the reference pictures from ref. 39.
For each section, we marked the position of the base of the microen-
doscope for every mouse (Extended Data Fig. 2b).

Verification of cell type. Standard immunofluorescence protocols
were used to stain inhibitory and excitatory neurons. Slides were
incubated with the primary antibody (either rabbit anti-Neurogranin
(Millipore, 07-425;1:2,000) or rabbit anti-GAD65 (Millipore, AB1511;
1:500)) at 4 °C overnight followed by a 2-h incubation at room tem-
perature with the secondary antibody Alexa 594 anti-rabbit (Invitro-
gen, A-11062; 1:200). Slides were further stained for 4 min with DAPI
(Invitrogen, D1306;1:1,000) in PBS (0.1 M) before mounting. Confocal
pictures were taken in red (at wavelength 594 nm; Neurogranin or
GAD®65), green (at wavelength 488 nm; GCaMP6m) and blue channels
(at wavelength 390 nm; DAPI), and pictures were compared for overlap
of labeling (Extended Data Fig. 2c,d; acquired with Leica Stellaris 5,
LAS X software).

Behavioral procedures

Calcium imaging during mouse learning behavior. Calcium imag-
ing experiments were performed using a miniaturized fluorescence
microscope (nVistaHD 2.0; Inscopix). Before behavioral experiments,
we habituated all mice to the mounting procedure and the weight of
the miniscope for at least three consecutive days. During the mount-
ing procedure, animals were briefly head-fixed by fixing their metal
head bar to a custom-made mounting station with a running disk.
Additionally, subjects were habituated to the experimental room and
were handled by the experimenter for 5of 7 days preceding the experi-
ment. Inevery imaging session, we verified for absence of shiftsinthe
field of view and slightly adjusted the microscope focus if necessary.
We acquired frames of 1,000 x 1,000 pixels at 12 bits and a frame rate
of 20 Hz. To acquire the calciumimaging data, we used alight-emitting
diodeintensity between10% and 25% (100-150 pW) depending on the
strength of the GCaMP6m expression. For all recordings, we used the
maximum imaging sensor gainlevel of 4. Allrecorded datawere directly
streamed to the hard disk of a desktop computer.

Two-dimensional active avoidance. For the two-dimensional active
avoidance experiments, we used arectangular shuttle box (Cambridge
Instruments), which we separated into four compartments by using
four equally sized platforms. We 3D-printed these movable platforms
to fit between the bars of the shock grid, which allowed us to dynami-
cally adjust the safe zone during training. In the default position, the
platforms were situated below the shock grid such that mice could not
jump onto them to avoid contact with the grid. In the elevated state,
mice could fully stand on the platform without being in contact with
theshockgrid, thereby creating the possibility of escaping shocks. We
controlled the platforms using servo motors that we placed outside of
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theisolation chamber. The complete learning paradigm had aduration
of11 days, comprising habituation (day 1), active avoidance task 1 (days
2-4), active avoidance task 2 (days 5-9) and extinction sessions (days
10and11). All sessions had a duration of 40 min and contained 50 trials
with pseudorandom ITIs of 30 + 10 s. Each of the trials started with the
presentation of an 8 kHz tone at 80 dB for 10 s. In all active avoidance
sessions (days 2-9), the tone was followed by alight foot shock (0.2 mA)
withamaximal duration of 5 s. For each of the trials, we defined half of
the shuttle box as a safe zone. We determined the position of the safe
zone by the trial type (task 1 or task 2) and the position of the animal at
thestart of thetrial. For task 1trials, mice had to cross the midline along
thexaxis (X shuttles) of the cage toreach the safe zone, whereas for task
2 trials, mice had to cross the midline along the y axis (Fig. 1a). If mice
entered the safe zone during tone or shock presentation, we blocked
both tone and shock channels until the end of the trial. If mice did not
shut off the tone before shock onset, we elevated the two platforms
in the safe zone for a duration of 15 s, time-locked to the onset of the
shock, providing mice with the possibility to escape. We recorded all
mouse behavior using two top-view B/W cameras (DMK 23FV024;
ImagingSource) which covered the entire cage and were later merged
toproduce asingle behavior video. The recording of individual frames
ofthe behavior cameras was synchronized to the miniscope recordings
using a hardware trigger, which allowed the exact alignment of neural
and behavioral data.

Extracting neural activity from calcium imaging data
Preprocessing of calcium imaging data. We implemented the fol-
lowing procedures to preprocess the video of each individual imaging
session. We first spatially downsampled all frames by a factor of 2 to
obtain 500 x 500-pixel frames. Next, we used the TurboReg algorithm™
for motion correction by aligning each frame to a reference frame.
We then temporally downsampled videos by a factor of 4, resulting
in a frame rate of 5 Hz. To account for slow changes in luminosity
related to bleaching, we fit a rank-2 bleaching model by running PCA
on a temporally smoothed version of the video and then subtract-
ing this model from the original video. Next, to remove wide-field
luminosity fluctuations occurring on a faster time scale (for exam-
ple, neuropil signals), we normalized each frame by dividing it by its
lowpass-filtered version (using a Gaussian spatial frequency filter with
as.d.of7;Extended DataFig. 3c-e and Supplementary Video 3). Finally,
were-expressed all frames in units of relative changesin fluorescence,
givenby AF(t)/FO = (F(t) - FO)/FO, where FO is the mean frame obtained
by averaging over the entire movie.

Cell extraction for individual sessions. To automatically identify
individual neurons in the calcium imaging movies of a given imaging
session, we used a well-established cell extraction algorithm based
on PCA and independent component analysis (ICA)*. This algorithm
generates spatial filters that correspond to the cells’ locations, which
allowed us to extract the corresponding temporal activity traces.
However, instead of extracting these activity traces for each session
individually, we first use the positional information contained in the
identified spatial filters to align the movies from all imaging sessions
of agivenmouse.

Session alignment. To be able to track cells across imaging sessions,
we applied the following alignment procedure for each mouse. We first
constructed cell maps for every session by calculating the maximum
projection of all cells’ spatial filters onto one image (see outlines in
Fig. 1f). We then used MATLAB’s imregister function to align the ses-
sions’ cellmaps onto one reference session. We controlled the quality
of the alignment by quantifying the pairwise similarity between the
cellmaps ofindividual sessions (Extended Data Fig. 3b) and by visually
inspecting the alignment (Supplementary Video 4). Based on these
criteria, we excluded sessions for which we could not find asatisfactory

alignment (Extended Data Fig. 3b). Next, we used the registration
coordinates of the aligned cell maps to align all session movies into a
common reference frame. This allowed us to concatenate all session
movies to construct one movie containing the full experiment. To
account for differences in the signal-to-noise ratio of individual ses-
sions, we calculated the overall s.d. of all pixels for every session and
then scaled the corresponding movies to match the minimal s.d. The
resulting concatenated movie thus contained AF/Fvalues withastable
mean ands.d. over all sessions.

Joint analysis of multiple sessions. We used the aligned and concat-
enated movies of individual subjects and PCA/ICA to obtain spatial
filtersand activity traces over the whole experiment. Because the high
number of frames made running PCA/ICA on the whole concatenated
movie intractable, we instead generated spatial filters by performing
signal extraction on a reduced movie, containing 6,000 consecutive
frames fromevery session (thatis, half of the data). We then recovered
theactivity traces over the full duration of the concatenated movie by
projecting the full movie onto these spatial filters.

Postprocessing and validation. A known issue with PCA/ICA is that
individual cells are occasionally split into multiple components. To
make sure we do notinclude split cellsinour analyses, we detected pairs
of cellsthat have highly correlated activity (Pearson correlation > 0.7)
and are spatially close (centroid distance < 20 pixels) and excluded
one of the cells for each pair. Finally, we manually validated each cell
by inspecting its morphology, activity trace over all sessions, mean
calciumtransient and checking whether peaksinthe activity trace were
consistently caused by the same pixel pattern (Extended Data Fig. 4).

Quantification and statistical analysis

Behavior analysis. To analyze animal behavior, we first stitched the vid-
eos of thetwo behavior camerasto obtainasingle video. We then used
DeepLabCut software*® to track five points of the animal (Extended
Data Fig. 1). To quantify the overall speed of the animal, we averaged
the positions of the three most stable points (left ear, right ear and mini-
scope bottom) and calculated the instantaneous speed per time step.

Alignment of trials and ITI shuttles. We aligned avoid trials accord-
ing to the start of the avoidance shuttle (shuttle start). We defined
the shuttle start time as the timepoint with the maximal increase in
instantaneous speed within the 2 s window before the detected shut-
tle. For allanalyses that considered the window starting 3 s before the
shuttle start, we discarded avoidance trials with a shuttle start earlier
than 3 s after tone start. To ensure that error trials were comparable
to avoid trials in terms of trial lengths, we randomly sampled error
trial alignment points (pseudoshuttle start) such that they matched
the distribution of shuttle start time points of avoid trials between
3 sand 9 s. Toaccount for the variability introduced by this sampling,
we repeated each analysis over multiple repetitions (Avoid and error
decoding). We aligned ITI shuttles analogously to avoid trials.

Single-cell analysis. To define cells as trial-responsive, we considered
the 3 swindow after tone start and the 3 s window before shuttle start.
We calculated z scores per time step, using the 6 s window before the
trial start as a baseline period. We defined cells as trial-responsive
if their mean absolute z score exceeded a value of 1.96 (P< 0.05,
two-tailed; data distribution was assumed to be normal, but this was
not formally tested)®.

Subject alignment. To align the population activity of different sub-
jectsintoone commonsubspace, wefirst collected event-aligned trial
averages (Extended DataFig. 6). We separately aligned data from avoid
trials, error trialsand the ITI for the two tasks (that s, 2 x 3 conditions).
Foravoid trials, we used windows around the tone start (-1sto3s) and
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shuttle start (-3 sto1s) alignment points. For error trials, we used the
same structure using the sampled alignment points (pseudoshuttle
start). For ITI shuttles, we used the window from -4 s to 4 s around
shuttle start. We next computed condition averages for each cell in
eachofthesix conditions and concatenated all cells from all animals to
obtain six (n x t) matrices, where nis the total number of neurons and
tis the number of time steps (8 s at 5 Hz). We then mean-subtracted
these six matrices and normalized them to have a Frobenius norm of 1.
Next, we concatenated the six normalized condition average matrices
along the time dimension to obtain an (n x 6 £) matrix (Extended Data
Fig.6b (left)), on which we then performed PCA. We defined the result-
ing (n x k) matrix of coefficient values as the joint subspace (Extended
DataFig. 6b (middle)), where kis the number of PCs we chose to use. To
compute subject-specific projection matrices for projecting cellular
activity into this joint subspace, we split the coefficient matrix along
the cell dimension back into coefficient matrices for the individual
subjects (Extended DataFig. 6b (right)). Because these matrices are not
orthogonal anymore, we used the QR decomposition to orthogonalize
them as the final step of the procedure. To ensure that the alignment
procedure did notintroduce artifactsin further analyses, we used half
of the trials for alignment and the other half for the decoding analyses
described below. The choice of trials was randomly assigned for every
repetition. We chose to work with aten-dimensional joint subspace, as
ten constitutes agood tradeoff between explained variance and align-
ment quality (Extended Data Fig. 6d-f). Another factor that we took
intoaccountisthat our decomposition approach (see below) requires
a certain dimensionality to separate neural signals into task-related
dimensions. Inour analyses, we consider five task-related dimensions,
butwe empirically observed that a higher number of dimensionsin the
initialjoint subspaceled to cleaner separation of signals into these five
dimensions, as the decomposition procedures had a higher degree
of freedom.

Avoid and error decoding. We aligned avoid and error trials (as
described above) and trained individual decoders for every time
step from -3 s to 1s from the alignment points. Decoders were lin-
ear SVMs with a box constraint parameter of 1, and we used fivefold
cross-validation to estimate test accuracies. We used avoid and error
trials from days 3-9 and balanced the two classes by subsampling
300 trials per class in all settings. For some avoid trials, the tone
can be turned off in the 1s after shuttle start (Fig. 1h). Because we
want the decoders to only capture avoidance-related information,
we excluded these trials for the respective time steps to ensure that
there is no confounding tone-related information. To deal with the
variability introduced through sampling (error trial alignment and
trial samples), we repeated each analysis multiple times (typically 80
times, if not reported otherwise) and computed average accuracies
over repetitions. When separately evaluating decoders for individual
subjects (Extended Data Fig. 8h,l) or sessions (Fig. 5d,e), we split all
trials into one training set and one test set (instead of using fivefold
cross-validation). This required decreasing the number of trials used
for training and testing to 150 per class.

ITI control and video decoders. In the ITI decoding setting, we con-
sidered thewindow from-3 sto1saroundtheshuttlestart foreachITI
shuttle. We trained decoders to discriminate ITIshuttles from random
4 speriodsinthelTI. Forthevideo decoder control setting, we used the
five-dimensional speed vector from the DeepLabCut tracking points
(Extended Data Fig.1a). The purpose of the ITI control is to assess how
much of the effect we see in avoid versus error decoding (Fig. 2c) can
be explained by motion-related information. We thus had to match
the amount of motion-related information between the avoid versus
error and the ITI shuttle versus ITI random settings. We achieved this
by selecting ITI shuttles based on their mean speed (faster shuttles
are easier to decode; Extended Data Fig. 7a-d). By choosing the ten

fastest shuttles from every session for decoding, we could match the
performance of video decoders between the avoid and ITI settings
(Fig.2d and Extended DataFig. 7c,d). This allowed us to conclude that
the differences we observed for neural decoders (Fig. 2c) are not based
onsimple differences in motion.

Identification of motion dimensions. To identify motion-related
dimensions in the joint coding subspace, we collected ITI shuttles
from task 1and task 2 sessions and computed average activities for
the window from -4 s to 4 s around shuttle start. We then performed
PCA on the resulting activity matrix and considered the first five PCs
as motion dimensions.

Identification of avoidance dimensions. To define avoid dimensions,
we first projected all trial datainto the nullspace of the first two motion
dimensions. Next, we iteratively defined avoid dimensions using the fol-
lowing procedures: (1) we traina time-independent avoid/error decoder
usingrandomly sampled time points fromthe -3 sto1swindow around
shuttle start (one pertrial), (2) we compute the avoid dimension by nor-
malizing the decoder weight vector to have anorm of 1and projecting
this vector back from the nullspace into the ten-dimensional subspace,
(3) we project the trial data into the nullspace of the space given by the
firsttwo motion dimensions and all avoid dimensions and (4) we repeat
the process with different trial samples and timepoint samples until we
have obtained five avoid dimensions.

Identification of tone dimension. To identify tone dimensions, we
followed the same strategy as for avoid dimensionsin the nullspace of
the first two motion dimensions and the first two avoid dimensions.
We trained atime-independent tone decoder using randomly sampled
time points from the first 5 s of avoid trials (we only used time steps
before shuttle start) and error trials. The baseline period was defined
using data points from the period 1s before tone start.

Task decoding. We trained time-dependent SVM decoders to discrimi-
nate between datafromtask1(days3and4)andtask 2 (days 6-9) based
onactivity in the five-dimensional coding space (Fig. 6a-c). We trained
anindependent set of decoders foravoid trials, error trialsand ITI shut-
tles. For ITIshuttle task decoding, we used only X shuttles for task1and
only Y shuttles for task 2, such that the ITI shuttle setting has the same
task-specific motion profiles as the avoid setting. This choice ensures
that performance differences between the avoid and ITI settings can-
not be explained by simple differences in motion profiles between
the tasks. To quantify theimportance of agiven coding dimension for
task-decoding accuracy, we repeated the decoding procedure with
individual dimensions (Fig. 6d).

Software
For all data analysis (image preprocessing and population analysis) and
statistics, we used the MATLAB programming environment (2016a).

Statistics and reproducibility

For all analyses, including random sampling (for example, choice of
trials used for subject alignment or decoding), we performed multiple
repetitions withindependently drawn samples. Based on these repeti-
tions, we computed 95% bootstrapping Cls as follows: we sort all values
and take the 3rd and 78th values asborders of the Cl, as this interval con-
tains 76 of 80 (thatis, 95%) of the values. We then determine significance
based on nonoverlapping Cls. If not indicated differently, violin plots
indicate mean and 95% Cls. Box plots indicate median (center), 25th and
75th percentiles (box) and most extreme data points (whiskers) that
were not considered outliers (points for which the distance from the
box exceeds1.5times thelength of the box). The sample sizes required
for this study were initially estimated based on pilot behavior studies.
No statistical method was used to predetermine sample size, but our
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samplesizes are similar to those reported in previous publications®*.
We excluded one animal because we did not observe any neuronal
activity due toinsufficient labeling and/or GRIN lens misplacement. In
accordance with the animal welfare regulations, we had to terminate
the behavior experiments for six mice because they did not learn the
task sufficiently (performance below 50% after 3 days of training). We
excluded eightimaging sessions (from atotal 0f132,12 mice x 11 days)
because we could not align the recorded frames to frames from previ-
oussessions (Supplementary Video 4 and Extended DataFig.3b). The
experiments were not randomized, and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The source data that support the findings of this study are available
at Zenodo at https://zenodo.org/records/11282437 (ref. 42). The raw
imaging data will be made available upon reasonable request. Source
data are provided with this paper.

Code availability

The MATLAB codes detailing all aspects of the performed analysis are
publicly available at Zenodo at https://zenodo.org/records/11283463
(ref.43).
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Extended Data Fig. 1| Animal tracking and behavior analysis. (a) DeepLabCut aligned to the shuttle start for tasks 1 (blue, left) and 2 (green, right) (mean + s.d.

tracking points of the animal. (b,c) Avoidance trajectories during task 1

over shuttles from 12 mice). ITI shuttles are depicted in gray. (g) Distributions

(X-shuttling) and task 2 (Y-shuttling), respectively. (d) Distribution of shuttle of mean shuttle speed (average over 2 s window centered around shuttle) for ITI
angles in degrees for all 12 animal subjects in tasks 1and 2. Box plots indicate (gray) and avoid (colored) shuttles in tasks 1 (left, 1151 avoid shuttles, 1329 ITI
median (center), 25th and 75th percentiles (box) and most extreme data points shuttles) and 2 (right, 1945 avoid shuttles, 3859 ITI shuttles). (h) X axis (blue) and
(whiskers) that were not considered outliers (points for which the distance from Y axis (green) shuttle frequency compared to the respective ITI (gray) shuttle
the box exceeds 1.5 times the length of the box). (e) Mean shuttle trajectories frequency across days (mean + s.e.m. over 12 mice).

depicted in the shuttle box for all 12 animals. (f) Animal speed time courses
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Extended Data Fig. 2| GRIN lens implant and cell labeling verification.

(a) Verification of the placement of the GRIN lens, with the GRIN lens position
displayed in an example coronal mouse brain section. Nissl stain (red) and
GCaMP6m (green). The shade blue area below the GRIN lens corresponds to

an estimate of the distance between the edge of the implant (displayed in b)

and theimaging plane (200 pm). (b) Locations of the edge of the implant were
mapped onto the mouse brain atlas (see ref. 44) for each individual animal.

(c) Left: immunohistological validation of GCaMP6m expression in PL, comparing

5 (mm)

GCaMP6m (green) and neurogranin labeling (red) in excitatory neurons.
Topright: overlap. Middle right: GCaMP6m. Bottom right: neurogranin.

(d) Left: comparison of GCaMP6m expression (green) to GAD65 staining (red).
Topright: overlap. Middle right: GCaMP6m-expressing neurons. Bottom right:
GAD65-positive neurons. Arrows indicate three examples of GAD65-positive
neurons. Five independent repetitions with images from different subjects
produced qualitatively similar results (c,d).
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Extended DataFig. 3 | Validation ofimaging and signal extraction
techniques. (a) Map of identified cells (in green) overlaid on animaging

frame displaying the log of the standard deviation of individual pixels over all
preprocessed, aligned and concatenated recording sessions for an example
mouse. This visualization provides an intuition for the spatial extent of individual
cells, but by itself cannot capture the quality of individual cells (see Extended
DataFig.4).Scale bar:100 pm. Five independent repetitions with data from
different subjects produced qualitatively similar results. (b) Quantification of
session alignment for individual subjects. We calculated pairwise mean squared
errors (MSEs) between the cell maps of two aligned sessions. Shifts in the field of
view that could not be aligned were visible as high MSE values between a given
session and a set of well-aligned sessions. Data exclusions are displayed inred.
(c) Analysis of background (BG) activity and the effect of lowpass normalization.
For all cells of an example session (example cell displayed in grayscale), we
calculated background activity traces using ring filters centered on the cell’s
centroid (displayed in purple). Scale bar: 30 um. (d) Activity traces for the

two spatial filters from c with and without lowpass normalization. Without
normalization, cell and background activities are highly correlated, indicating
contamination of the cellular signal. With normalization, the correlation
disappears and calcium transients can be resolved in the cellular signal.

(e) Quantification of the correlation between cellular and background activity

for all cells of an example session. Without lowpass normalization, most

cells showed substantial positive correlations (median Pearson correlation
coefficient = 0.60). Using the lowpass normalization, the median Pearson
correlation coefficient dropped to 0.02, indicating that the lowpass filtering
strategy employed in our pipeline successfully removes the majority of neuropil
contamination from the cells’ activities. (f) Analysis of motion-related activity as
acontrol for motion-related artifacts in neural activity. Average response to all
ITIshuttles (black) of an example cell with individual example shuttles displayed
ingray. This example cell shows motion-related activity based on calcium
transients that are not consistent with artifacts based on microscope motion.

(g) Quantification of motion-related responses over all recorded cells. Motion
score is calculated as the meanzscore in the 4 s after motion onset (at time 0). Many
cells show positive (green) and negative (red) responses, but many cells (gray)
are not strongly modulated by motion, indicating that there is no systematic
motion artifact affecting all cells. (h) The time course of positively and negatively
modulated cells is consistent with neural responses (slow and asymmetric) rather
than motion-related artifacts, which would be expected to be fast and symmetric.
(i) Quantification of peak latency for positively and negatively modulated cells.
(§) Quantification of response symmetry for positively and negatively modulated
cells. Symmetry index is calculated as (activitypeu . s + ACHVItY pea—25)/ACLIVItY peas
such that O indicates symmetric responses.
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Extended Data Fig. 4 | Quality control for identified neurons. (a) Features of donotresemble the filter indicate contamination through another cell.
an example cell that was accepted in the annotation process. A cell is defined (b) Example of arejected cell with a noisy spatial filter and activity trace,
by its activity trace over all sessions (top left, individual imaging sessions are asymmetric mean transient and inconsistent event snapshots. (c) Distributions
indicated as different gray shades, see top right for zoom-in) and its spatial filter of mean numbers of events per day. (d) Distributions for the coefficient of
(bottom middle). Scale bar: 100 pm. We detect events (red dots) as peaks in the variation of the number of events per day (ratio of s.d. and mean). The CV tends
activity trace that deviate 3 standard deviations from the mean. We then use to be substantially below 1 (median = 0.52 for accepted cells), indicating that the
these detected events to calculate a mean transient (bottom leftinred, individual ~ distribution of the number of events per day does not fluctuate far from the mean
eventsinblack) and to display snapshots of the images that caused the peaksin over days (displayed in ¢), which suggests stable activity levels over sessions.
theactivity trace (bottom right). Cells are accepted if they have (1) aclear and (e) Distributions of symmetry index calculated using the mean transient as

appropriately shaped spatial extent, (2) astable activity trace with well-identified  (activity .15 + aCtIVity e - 15)/activity ... (F) Distribution of filter diameter
peaks, (3) amean transient with fast rise and slow decay as expected from calcium  for accepted (green) and rejected cells (red). (g) Distributions of snapshot
indicator kinematics and (4) if the event snapshots consistently resemble the dissimilarity values. Snapshot dissimilarity is calculated as the mean of the mean
spatial filter (displayed on the upper left of the snapshot matrix). Snapshots that squared error (MSE) between the filter and each event snapshot.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article https://doi.org/10.1038/s41593-024-01704-5

A Trial Start Sorting B Pre-Shuttle Sorting C Shuttle Sorting

Z-score

Cell ID (sorted according to shuttle activity)

Cell ID (sorted according to trial start activity)
Cell ID (sorted according to pre-shuttle acivity)

3333 == e ® Shuttle
10 33 01 10 3-3 01 10 3-3 01 Start
Time (s) Start

Extended Data Fig. 5 | Diversity of single-cell response profiles. (a) Trial- (b) Same as a, but cells are sorted according to their mean zscoreinthe3s
averaged and z-scored neural activity (Methods) of all recorded cells during window preceding shuttle start. This sorting reveals that the activity preceding
avoid trials of an example session (session 7). Activity is aligned to tone start shuttle actions tends to be different from both the activity at tone start and the
(left) or shuttle start (right), as shown, for example, cells, in Fig. 1I. Cells are activity after shuttle start. (c) Same as a, but cells are sorted according to their
sorted according to their time-averaged zscore in the 3 s window after tone start mean zscoreinthelswindow after shuttle start. Overall, responses are highly
(window is indicated by the black bar at top of panel). This sorting reveals that diverse over the population because cells show different combinations of activity

cells tend to have different responses in the tone start and shuttle start windows. levels for the different task-related events.
Barcodeindicatesif cells were classified as trial-responsive (black) or not (white).
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Extended DataFig. 6 | Alignment of neural data across animals into ajoint
subspace. (a) Specification of time points used for alignment displayed for two
example neurons from different subjects that show similar responses during
avoid, error and ITIevents in task 1 (blue shade) and task 2 (green shade). (b) To
align neural population data, the temporally aligned event averages displayed
inaare first concatenated for all cells. We then process these event averages
(Methods) and concatenate them along the time axis. Next, PCA is used to
generate the joint subspace, which is defined by the coefficients of the first n PCs
(nis chosen below). Subject-specific projection matrices into the joint subspace
canthen be computed by splitting the coefficient matrix back into matrices for
individual subjects and orthogonalizing them using the QR decomposition.

(c) Top: mean projections onto subspace dimensions 1-10 (n = 12 subjects).
Shadingindicates temporal structure displayed in a. Bottom: projections
displayed for individual subjects, highlighting common structure. (d) Variance
explained by the first 20 subspace dimensions (mean and 95% Cls for 80
repetitions) for the joint PCA + QR procedure (black). To control how the
alignment procedure affects how well the low-dimensional subspace captures
neural variability, we performed PCA individually per subject as an upper

baseline for the explained variance (orange). The alignment only has a minor
effect on the variance explained by the identified subspace. In this work, we

use the first 10 dimensions to define the joint subspace. (e) Left: cross-subject
correlation of the first subspace dimension calculated for pairs of projections
into this dimension (see bottom row of ¢). Right: similarity of pairs of dimensions,
where similarity is computed by averaging the elements of the triangular
cross-subject correlation matrix displayed on the left. (f) Average dimension
similarity for the first 20 subspace dimensions with alignment (PCA + QR,

black) and without alignment (Indv. PCA, orange) (mean and 95% Cls for

80 repetitions). Additionally, we controlled how the dimension alignment quality
depends on the temporal alignment of specific activity patterns around the
chosen events (rather than general bump-like activity) by shuffling event types
between subjects (event shuffle, green). We found that shuffling eventsled toa
marked drop in alignment quality, indicating that the correct alignment of neural
subspaces depends on the correct temporal alignment of conceptually similar
events. We chose the number n of used dimensions to be 10, as it constitutes a
good tradeoff between explained variance (see ¢) and alignment quality.
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Extended DataFig.7|Selection of ITI shuttles and comparison to avoid
shuttles. (a) Mean speed of ITland avoid shuttles for different values of n, where
nrefers to the n fastest shuttles selected from each session. With decreasing n,
the average speed trace of ITI shuttles becomes more similar to the one of avoid
shuttles. (b) Distribution of mean speed (average over 2 s window centered
around shuttle start) values of ITI shuttles for different values of n. Dots indicate
distribution mean, which shifts toward that of avoid shuttles (black). (c) Decoding
accuracy of video decoders trained to discriminate avoid and error trials (black)
orITIshuttles vs.random ITI periods. (d) Difference in predictive accuracy in
c(average accuracy 2 s before shuttle start) between avoid/error and ITI decoding
for different values of n (mean and 95% Cls for 80 repetitions). (e,f) Mean speed
for the avoid and error (e) and ITIshuttle and ITI random (f) comparisons

for n=10. While the exact speed of avoid and ITI shuttles is not matched, the
differenceto error trials/random ITI periods is comparable. (g,h) Distributions of

mean speed for avoid and ITI shuttles (g) and error trials and random ITI periods
(h). While differences between the settings remain, the distributions of mean
speed largely overlap. (i-k) UMAP embeddings of the 100-dimensional motion
traces (5 tracking points x 20 time steps). Dimension 1separates shuttles

from non-shuttles. Avoid and ITI shuttles as well as error trials and random

ITI periods are intermingled. (1) Discriminability index for the avoid and ITI
settings quantified for the two UMAP dimensions (n =10 random initializations).
Dimension1consistently distinguishes between shuttles and non-shuttlesin
bothsettings, while dimension 2 does not. (m) Correlation of UMAP dimensions
and mean speed (n =10 randomi initializations). High correlation for dimension
lindicates that mean speed is the main feature that distinguishes the different
motion traces. Box plots indicate median (center), 25th and 75th percentiles (box)
and most extreme data points (whiskers) that were not considered outliers (points
for which the distance from the box exceeds 1.5 times the length of the box).
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Extended Data Fig. 8 | Definition of coding dimensions. (a) Mean animal
speed during ITIshuttles used for the definition of motion dimensions (n =1568
ITIshuttles). (b) To define motion dimensions, we computed the average
neural activity in the joint subspace over all ITI shuttles and performed PCA.

(c) Variance is explained by the first five PCs evaluated for the ITI shuttles used
indimensionality reduction (DR data) and for the ITI shuttles used in decoding
analyses (val. data). Mean and 95% Cls for 80 repetitions. (d) PC1 projections for
ITIshuttles of individual subjects. While there are differences in the magnitude,
the temporal evolution of the projections is highly similar to the one of PC1
obtained using the pooled data (red line in b, Pearson correlation coefficient
0.983 + 0.010, mean + s.d. over 12 subjects). (e) Correlation coefficients for
pairwise comparisons of time-step decoder weights (mean over 80 repetitions)
for avoid versus error decoders from Fig. 3¢ (right, black line). Especially before
action onset, decoder weights show high correlations, indicating a stable
representation of avoidance-predictive activity. Based on this finding, we
trained asingle time-independent decoder for all time steps, whose weights

we then used to define the Avoid dimension. (f) Accuracy of avoid versus error
decoding per time step for a set of time-dependent decoders trained individually
per time step, and one single time-independent decoder trained using data
fromall time steps (mean over 80 repetitions). The time-independent decoder
was separately evaluated with data from individual time steps. The accuracies

before action onset are matched between the two settings (time-dependent

and time-independent), suggesting that avoidance-predictive activity can be
captured using a single decoder. We therefore used the weights of this single
time-independent decoder to define avoid dimensions. (g) Decoding accuracy
of time-independent decoders for the progressive removal of avoid dimensions
(mean and 95% Cls over 80 repetitions). Avoid dimensions are defined by the
decoder’s weights vector and are iteratively removed via nullspace projections.
Comparison to randomly removed dimensions in blue. (h) Analysis of variability
over subjects. To assess decoding accuracies per subject we trained a single
decoder using data from all subjects but evaluated it separately using data from
individual subjects. The resulting accuracies show differences in magnitude but
all follow the same temporal dynamics as time-independent decoder trained on
pooled data (the green line in e, Pearson correlation coefficient 0.984 + 0.012,
mean +s.d. over 12 subjects). This suggests that the effects captured with our
jointanalysis of all subjects are representative of effects on the single subject
level. (i-1) Analogous to e-h for tone decoding. Time-step tone decoders show
representational stability (i), performance of time-step decoders can be matched
using asingle time-independent decoder (j) and the temporal evolution of
decodingaccuraciesis consistent between pooled data and individual subjects
(I, Pearson correlation coefficient 0.987 + 0.015, mean * s.d. over 12 subjects).
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Extended Data Fig. 9| Variability in neural activity over subjects and relation
to avoidance behavior. (a) Projections of avoid-trial neural activity onto the
five coding dimensions (Fig. 4a) for each subject. (b) Same as afor error trials.
(c) To test whether variability in neural activity over subjects relates to behavioral
variability, we correlated activity in the avoid dimensions to the overall task
performance and task 2 shuttle angle over subjects (see following panels).

Panel ¢ shows the relation of the magnitude of activity in the avoid 1dimension
(time-averaged over the 3 s window preceding avoid start and averaged over all

T2 Avoid 1 Activity

avoid trials) and overall performance (% avoid trials in active avoidance sessions).
We found no clear correlation for this or any of the following analyses (Pearson
correlation coefficient = 0.07). (d) Same as ¢ for the avoid 2 dimension (Pearson
correlation coefficient =-0.07). (e) Relation between magnitude of activity in the
avoid 1dimension during task 2 (time-averaged over the 3 s window preceding
avoid start and averaged over all task 2 avoid trials) and the task 2 shuttle angle
(see Extended Data Fig. 1d; Pearson correlation coefficient = —0.04). (f) Same

as e for the avoid 2 dimension (Pearson correlation coefficient =-0.02).

T2 Avoid 2 Activity
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Extended Data Fig.10 | Coding dimension projections per session. Mean projection (n = 80 repetitions) of the five coding dimensions (as presented in Fig. 4)
displayed across all 11 days of learning for trials with and without shuttling.

Nature Neuroscience


http://www.nature.com/natureneuroscience

nature portfolio

Corresponding author(s):  Benjamin Ehret, Benjamin F. Grewe

Last updated by author(s): May 24, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
Q
(e
=
®
§o;
e
=
o
=
_
D)
§o)
o)
=
S
Q
wn
(e
3
S}
Q
<L

Statistics
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Data collection  Allin vivo calcium imaging data was collected with the Inscopix miniaturized microscope system nVista 2.0.
All histological images were acquired using a either CLSM - Leica Stellaris 5 upright microscope equipped with an HC PL APO CS2 20x 0.75 IMM
0.66 objective (data acquisition software used was LAS X) or an Olympus fluorescence microscope (BX51).
All behavior videos were acquired using two top view B/W cameras (DMK 23FV024; ImagingSource) and custom written MATLAB code
(2016a).

Data analysis For all imaging data analysis we used the MATLAB programming environment (2016a) and developed custom code for (1) the imaging data
preprocessing, (2) for the cell extraction, (3) for the joint subspace alignment across all mice and (4) for the population data analysis. For
motion correction of the calcium imaging movies we used the Turboreg software. For tracking of the animals we used the DeeplLabCut
software. All code required to reproduce the findings of the paper is available at https://zenodo.org/records/11283463.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The source data that support the findings of this study are available at https://zenodo.org/records/11282437. The raw imaging data will be made available upon
reasonable request.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
other socially relevant

groupings

Population characteristics N/A
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Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were selected based on previous experience from related research and literature:
- Hippocampus and cognitive control group size n =8 - 12 (Chung et al., 2021)
- ACC and avoidance behaviour group size n =7 - 14 (Lee et al., 2019)
- Amygdala and stated dependent flexibility group size n = 10 (Fustifiana et al., 2021)
- Neural ensemble dynamics in the amygdala group size n = 8-12 (paper from study director: Grewe et al., 2017)

Data exclusions  Inaccordance with the animal welfare regulations, we had to terminate the behavior experiments for 6 mice because they did not learn the
task sufficiently (performance below 50% after 3 days of training). We excluded 8 imaging sessions (from a total of 132, 12 mice x 11 days)

because we could not align the recorded frames to frames from previous sessions (see Supplementary Movie 4, Fig. S3B).

Replication Results that are displayed using representative examples and were not statistically evaluated (Extended Data Fig. 2C-D and Extended Data Fig.
3A) were repeated multiple times and we ensured that all repetitions produced qualitatively similar results.

Randomization  We did not randomize as we only had one group of animals that we recorded from.

Blinding B.E. alone performed all animal experiments. Since animals need to be prepared and handled individually and due to the nature of the
experiment a blinding of the experimenter was not possible.
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Materials & experimental systems Methods
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Antibodies

Antibodies used rabbit anti-GAD65 (1:500, AB1511, Millipore)
rabbit anti-Neurogranin (1:2000, 07-425, Millipore)
Alexa 594 anti-rabbit (1:200, A-11062, Invitorgen)
DAPI (1:1000, D1306, Invitrogen)
Nissel stain (NeuroTrace 530/615, N21482, Invitrogen)
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Validation Antibodies were chosen based on a literature review for each antibody to identify the best candidate for our experiments. Validation
was determined by reviewing the manufacturer's literature, other published research, and prior experiments in the lab. For each
experiment, at least one slide was designated for a "secondary only" control and examined for potential background staining.
Commercial antibodies were validated by the manufacturer:
rabbit anti-GAD65 www.merckmillipore.com/CH/de/product/Anti-Glutamate-Decarboxylase-65-67-Antibody, MM_NF-AB1511
rabbit anti-Neurogranin https://www.merckmillipore.com/CH/de/product/Anti-Neurogranin,MM_NF-07-425-1-100UG
Alexa 594 anti-rabbit www.thermofisher.com/antibody/product/Rabbit-anti-Mouse-1gG-H-L-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-11062
DAPI www.thermofisher.com/order/catalog/product/D1306
Nissel stain www.thermofisher.com/order/catalog/product/N21482

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Experiments were performed on adult male C57BL/6J Crl1. Mice were 10-17 weeks old at the time of the virus injection surgery and
20-32 weeks old during in vivo imaging and behavioral experiments. Animals were housed in individually ventilated cages (IVC) in a
12 h light/dark cycle room (lights on from 7:00 to 19:00, ambient temperature: 21-24°C, humidity: 35-70%), and were provided food
and water ad libitum. After import from the breeders, mice were given a 2 weeks acclimatization period to the new housing
condition prior to the first surgery. During the experiments mice were kept in groups of 2 to 5 animals.

Wild animals No wild animals were used in the study.
Reporting on sex We report the sex of all animals used for this study in the methods section (all male).
Field-collected samples  No field collected samples were used in the study.

Ethics oversight All animal well-fare and ethical aspects of our study were evaluated by the Swiss Cantonal Veterinary office and approved,.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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