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Abstract
The success of deep learning sparked interest in whether the brain learns by using
similar techniques for assigning credit to each synaptic weight for its contribution
to the network output. However, the majority of current attempts at biologically-
plausible learning methods are either non-local in time, require highly specific
connectivity motifs, or have no clear link to any known mathematical optimization
method. Here, we introduce Deep Feedback Control (DFC), a new learning method
that uses a feedback controller to drive a deep neural network to match a desired
output target and whose control signal can be used for credit assignment. The
resulting learning rule is fully local in space and time and approximates Gauss-
Newton optimization for a wide range of feedback connectivity patterns. To further
underline its biological plausibility, we relate DFC to a multi-compartment model
of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity
rule, consistent with recent theories of dendritic processing. By combining dynam-
ical system theory with mathematical optimization theory, we provide a strong
theoretical foundation for DFC that we corroborate with detailed results on toy
experiments and standard computer-vision benchmarks.

1 Introduction
The error backpropagation (BP) algorithm [1, 2, 3] is currently the gold standard to perform credit
assignment (CA) in deep neural networks. Although deep learning was inspired by biological neural
networks, an exact mapping of BP onto biology to explain learning in the brain leads to several
inconsistencies with experimental results that are not yet fully addressed [4, 5, 6]. First, BP requires
an exact symmetry between the weights of the forward and feedback pathways [5, 6], also called the
weight transport problem. Another issue of relevance is that, in biological networks, feedback also
changes each neuron’s activation and thus its immediate output [7, 8], which does not occur in BP.

Lillicrap et al. [9] convincingly showed that the weight transport problem can be sidestepped in
modest supervised learning problems by using random feedback connections. However, follow-up
studies indicated that random feedback paths cannot provide precise CA in more complex problems
[10, 11, 12, 13], which can be mitigated by learning feedback weights that align with the forward
pathway [14, 15, 16, 17, 18] or approximate its inverse [19, 20, 21, 22]. However, this precise
alignment imposes strict constraints on the feedback weights, whereas more flexible constraints could
provide the freedom to use feedback also for other purposes besides learning, such as attention and
prediction [8].

A complementary line of research proposes models of cortical microcircuits which propagate CA
signals through the network using dynamic feedback [23, 24, 25] or multiplexed neural codes [26],
thereby directly influencing neural activations with feedback. However, these models introduce
∗Equal contribution
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highly specific connectivity motifs and tightly coordinated plasticity mechanisms. Whether these
constraints can be fulfilled by cortical networks is an interesting experimental question. Another
line of work uses adaptive control theory [27] to derive learning rules for non-hierarchical recurrent
neural networks (RNNs) based on error feedback, which drives neural activity to track a reference
output [28, 29, 30, 31]. These methods have so far only been used to train single-layer RNNs with
fixed output and feedback weights, making it unclear whether they can be extended to deep neural
networks. Finally, two recent studies [32, 33] use error feedback in a dynamical setting to invert the
forward pathway, thereby enabling errors to flow backward. These approaches rely on a learning rule
that is non-local in time and it remains unclear whether they approximate any known optimization
method. Addressing the latter, two recent studies take a first step by relating learned (non-dynamical)
inverses of the forward pathway [21] and iterative inverses restricted to invertible networks [22] to
approximate Gauss-Newton optimization.

Inspired by the Dynamic Inversion method [32], we introduce Deep Feedback Control (DFC), a new
biologically-plausible CA method that addresses the above-mentioned limitations and extends the
control theory approach to learning [28, 29, 30, 31] to deep neural networks. DFC uses a feedback
controller that drives a deep neural network to match a desired output target. For learning, DFC then
simply uses the dynamic change in the neuron activations to update their synaptic weights, resulting
in a learning rule fully local in space and time. We show that DFC approximates Gauss-Newton
(GN) optimization and therefore provides a fundamentally different approach to CA compared to
BP. Furthermore, DFC does not require precise alignment between forward and feedback weights,
nor does it rely on highly specific connectivity motifs. Interestingly, the neuron model used by DFC
can be closely connected to recent multi-compartment models of cortical pyramidal neurons. Finally,
we provide detailed experimental results, corroborating our theoretical contributions and showing
that DFC does principled CA on standard computer-vision benchmarks in a way that fundamentally
differs from standard BP.

2 The Deep Feedback Control method
Here, we introduce the core parts of DFC. In contrast to conventional feedforward neural network
models, DFC makes use of a dynamical neuron model (Section 2.1). We use a feedback controller to
drive the neurons of the network to match a desired output target (Section 2.2), while simultaneously
updating the synaptic weights using the change in neuronal activities (Section 2.3). This combination
of dynamical neurons and controller leads to a simple but powerful learning method, that is linked to
GN optimization and offers a flexible range of feedback connectivity (see Section 3).

2.1 Neuron and network dynamics
The first main component of DFC is a dynamical multilayer network, in which every neuron integrates
its forward and feedback inputs according to the following dynamics:

τv
d
dt
vi(t) = −vi(t) +Wiφ

(
vi−1(t)

)
+Qiu(t) 1 ≤ i ≤ L, (1)

with vi a vector containing the pre-nonlinearity activations of the neurons in layer i, Wi the forward
weight matrix, φ a smooth nonlinearity, u a feedback input, Qi the feedback weight matrix, and τv
a time constant. See Fig. 1B for a schematic representation of the network. To simplify notation,
we define ri = φ(vi) as the post-nonlinearity activations of layer i. The input r0 remains fixed
throughout the dynamics (1). Note that in the absence of feedback, i.e., u = 0, the equilibrium state
of the network dynamics (1) corresponds to a conventional multilayer feedforward network state,
which we denote with superscript ‘-’:

r−i = φ(v−i ) = φ(Wir
−
i−1), 1 ≤ i ≤ L, with r−0 = r0. (2)

2.2 Feedback controller
The second core component of DFC is a feedback controller, which is only active during learning.
Instead of a single backward pass for providing feedback, DFC uses a feedback controller to
continuously drive the network to an output target r∗L (see Fig. 1D). Following the Target Propagation
framework [20, 21, 22], we define r∗L as the feedforward output nudged towards lower loss:
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r∗L , r−L − λ
∂L(rL,y)

∂rL

∣∣∣
rL=r−L

= r−L + δL, (3)

with L(rL,y) a supervised loss function defining the task, y the label of the training sample, λ a
stepsize, and δL shorthand notation. Note that (3) only needs the easily obtained loss gradient w.r.t.
the output, e.g., for an L2 output loss, one obtains the convex combination r∗L = (1− 2λ)r−L + 2λy.

The feedback controller produces a feedback signal u(t) to drive the network output rL(t) towards
its target r∗L, using the control error e(t) , r∗L − rL(t). A standard approach in designing a feedback
controller is the Proportional-Integral-Derivative (PID) framework [34]. While DFC is compatible
with various controller types, such as a full PID controller or a pure proportional controller (see
Appendix A.8), we use a PI controller for a combination of simplicity and good performance, resulting
in the following controller dynamics (see also Fig. 1A):

u(t) = KIu
int(t) +KPe(t), τu

d
dt
uint(t) = e(t)− αuint(t), (4)

where a leakage term is added to constrain the magnitude of uint. For mathematical simplicity, we
take the control matrices equal to KI = I and KP = kpI with kp ≥ 0 the proportional control
constant. This PI controller adds a leaky integration of the error uint to a scaled version of the
error kpe which could be implemented by a dedicated neural microcircuit (for a discussion see App.
I). Drawing inspiration from the Target Propagation framework [19, 20, 21, 22] and the Dynamic
Inversion framework [32], one can think of the controller and network dynamics as performing a
dynamic inversion of the output target r∗L towards the hidden layers, as the controller dynamically
changes the activation of the hidden layers until the output target is reached.

Figure 1: (A) A block diagram of the controller, where we omitted the leakage term of the integral
controller. (B) Schematic illustration of DFC. (C) Schematic illustration of the multi-compartment
neuron used by DFC, compared to a cortical pyramidal neuron sketch (see also Discussion). (D)
Illustration of the output rL(t) and the controller dynamics u(t) in DFC.

2.3 Forward weight updates
The update rule for the feedforward weights has the form:

τW
d
dt
Wi(t) =

(
φ(vi(t))− φ(Wiri−1(t))

)
ri−1(t)T . (5)

This learning rule simply compares the neuron’s controlled activation to its current feedforward
input and is thus local in space and time. Furthermore, it can be interpreted most naturally by
compartmentalizing the neuron into the central compartment vi from (1) and a feedforward compart-
ment vff

i , Wiri−1 that integrates the feedforward input. Now, the forward weight dynamics (5)
represents a delta rule using the difference between the actual firing rate of the neuron, φ(vi), and
its estimated firing rate, φ(vff

i ), based on the feedforward inputs. Note that we assume τW to be a
large time constant, such that the network (1) and controller dynamics (4) are not influenced by the
weight dynamics, i.e., the weights are considered fixed in the timescale of the controller and network
dynamics.
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In Section 5, we show how the feedback weights Qi can also be learned locally in time and space for
supporting the stability of the network dynamics and the learning of Wi. This feedback learning rule
needs a feedback compartment vfb

i , Qiu, leading to the three-compartment neuron schematized
in Fig. 1C, inspired by recent multi-compartment models of the pyramidal neuron (see Discussion).
Now, that we introduced the DFC model, we will show that (i) the weight updates (5) can properly
optimize a loss function (Section 3), (ii) the resulting dynamical system is stable under certain
conditions (Section 4), and (iii) learning the feedback weights facilitates (i) and (ii) (Section 5).

3 Learning theory
To understand how DFC optimizes the feedforward mapping (2) on a given loss function, we link the
weight updates (5) to mathematical optimization theory. We start by showing that DFC dynamically
inverts the output error to the hidden layers (Section 3.1), which we link to GN optimization under
flexible constraints on the feedback weights Qi and on layer activations (Section 3.2). In Section
3.3, we relax some of these constraints, and show that DFC still does principled optimization by
using minimum norm (MN) updates for Wi. During this learning theory section, we assume stable
dynamics, which we investigate in more detail in Section 4. All theoretical results of this section
are tailored towards a PI controller, and they can be easily extended to pure proportional or integral
control (see App. A.8).

3.1 DFC dynamically inverts the output error
To understand how the weight update (5) can access error information, we start by investigating the
steady state of the network dynamics (1) and the controller dynamics (4), assuming that all weights are
fixed (hence, a separation of timescales). As the feedback controller controls all layers simultaneously,
we introduce a compact notation for: concatenated neuron activations v , [vT1 , ...,v

T
L ]T , feedforward

compartments vff , [vff,T
1 , ...,vff,T

L ]T , and feedback weights Q , [QT1 ...Q
T
L]T . Lemma 1 shows a

first-order Taylor approximation of the steady-state solution (full proof in App. A.1).
Lemma 1. Assuming stable dynamics, a small target stepsize λ, andWi andQi fixed, the steady-state
solutions of the dynamical systems (1) and (4) can be approximated by:

uss = (JQ+ α̃I)−1δL +O(λ2), vss = vff
ss +Q(JQ+ α̃I)−1δL +O(λ2), (6)

with J ,
[
∂r−L
∂v1

, ...,
∂r−L
∂vL

]∣∣∣
v=v−

the Jacobian of the network output w.r.t. all vi, evaluated at the

network equilibrium without feedback, δL the output error as defined in (3), vff
i,ss = Wiφ(vi−1,ss),

and α̃ = α/(1 + αkp).

To get a better intuition of what this steady state represents, consider the scenario where we want to
nudge the network activation v with ∆v, i.e., vss = vff

ss + ∆v, such that the steady-state network
output equals its target r∗L. With linearized network dynamics, this results in solving the linear system
J∆v = δL. As ∆v is of much higher dimension than δL, this is an underdetermined system with
infinitely many solutions. Constraining the solution to the column space of Q leads to the unique
solution ∆v = Q(JQ)−1δL, corresponding to the steady-state solution in Lemma 1 minus a small
damping constant α̃. Hence, similar to Podlaski and Machens [32], through an interplay between the
network and controller dynamics, the controller dynamically inverts the output error δL to produce
feedback that exactly drives the network output to its desired target.

3.2 DFC approximates Gauss-Newton optimization
To understand the optimization characteristics of DFC, we show that under flexible conditions on
Qi and the layer activations, DFC approximates GN optimization. We first briefly review GN
optimization and introduce two conditions needed for the main theorem.

Gauss-Newton optimization [35] is an approximate second-order optimization method used in
nonlinear least-squares regression. The GN update for the model parameters θ is computed as:

∆θ = J†θeL, (7)

with Jθ the Jacobian of the model output w.r.t. θ concatenated for all minibatch samples, J†θ its
Moore-Penrose pseudoinverse, and eL the output errors.
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Condition 1. Each layer of the network, except from the output layer, has the same activation norm:

‖r0‖2 = ‖r1‖2 = ...‖rL−1‖2 , ‖r‖2. (8)

Note that the latter condition considers a statistic ‖ri‖2 of a whole layer and does not impose specific
constraints on single neural firing rates. This condition can be interpreted as each layer, except the
output layer, having the same ‘energy budget’ for firing.
Condition 2. The column space of Q is equal to the row space of J .

This more abstract condition imposes a flexible constraint on the feedback weightsQi, that generalizes
common learning rules with direct feedback connections [16, 21]. For instance, besides Q = JT (BP;
[16]) and Q = J† [21], many other instances of Q which have not yet been explored in the literature
fulfill Condition 2 (see Fig. 2), hence leading to principled optimization (see Theorem 2). With these
conditions in place, we are ready to state the main theorem of this section (full proof in App. A).
Theorem 2. Assuming Conditions 1 and 2 hold, J is full rank, the task loss L is a L2 loss, and
λ, α→ 0 , then the following steady-state (ss) updates for the forward weights,

∆Wi,ss = η(vi,ss − vff
i,ss)r

T
i−1,ss , (9)

with η a stepsize parameter, align with the weight updates for Wi for the feedforward network (2)
prescribed by the GN optimization method with a minibatch size of 1.

Figure 2: Randomly generated feedback
matricesQ (blue) that satisfy Conditions
2 and 3, and have unity norm, visualized
by a principal component analysis, with
density contours added for visual clar-
ity. JT , J†, and JT (JJT + γI)−1, γ ∈
[10−5, 102], are added, highlighting that
the optimal feedback configurations for
DFC (blue) span a much wider space
compared to conventional CA methods.

In this theorem, we need Condition 2 such that the dynam-
ical inversion Q(JQ)−1 (6) equals the pseudoinverse of
J and we need Condition 1 to extend this pseudoinverse
to the Jacobian of the output w.r.t. the network weights,
as in eq. (7). Theorem 2 links the DFC method to GN
optimization, thereby showing that it does principled op-
timization, while being fundamentally different from BP.
In contrast to recent work that connects target propagation
to GN [21, 22], we do not need to approximate the GN
curvature matrix by a block-diagonal matrix but use the
full curvature instead. Hence, one can use Theorem 2 in
Cai et al. [36] to obtain convergence results for this setting
of GN with a minibatch size of 1, in highly overparame-
terized networks. Strikingly, the feedback path of DFC
does not need to align with the forward path or its inverse
to provide optimally aligned weight updates with GN, as
long as it satisfies the flexible Condition 2 (see Fig. 2).

The steady-state updates (9) used in Theorem 2 differ from
the actual updates (5) in two nuanced ways. First, the plas-
ticity rule (5) uses a nonlinearity, φ, of the compartment
activations, whereas in Theorem 2 this nonlinearity is not
included. There are two reasons for this: (i) the use of φ
in (5) can be linked to specific biophysical mechanisms
in the pyramidal cell [37] (see Discussion), and (ii) using
φ makes sure that saturated neurons do not update their forward weights, which leads to better
performance (see App. A.6). Second, in Theorem 2, the weights are only updated at steady state,
whereas in (5) they are continuously updated during the dynamics of the network and controller.
Before settling rapidly, the dynamics oscillate around the steady-state value (see Fig. 1D), and hence,
the accumulated continuous updates (5) will be approximately equal to its steady-state equivalent,
since the oscillations approximately cancel each other out and the steady state is quickly reached (see
Section 6.1 and App. A.7). Theorem 2 needs a L2 loss function and Condition 1 and 2 to hold for
linking DFC with GN. In the following subsection, we relax these assumptions and show that DFC
still does principled optimization.

3.3 DFC uses weighted minimum norm updates
GN optimization with a minibatch size of 1 is equivalent to MN updates [21], i.e., it computes the
smallest possible weight update such that the network exactly reaches the current output target after

5



the update. These MN updates can be generalized to weighted MN updates for targets using arbitrary
loss functions. The following theorem shows the connection between DFC and these weighted MN
updates, while removing the need for Condition 1 and an L2 loss (full proof in App. A).
Theorem 3. Assuming stable dynamics, Condition 2 holds and λ, α → 0, the steady-state weight
updates (9) are proportional to the weighted MN updates of Wi for letting the feedforward output r−L
reach r∗L, i.e., the solution to the following optimization problem:

arg min
∆Wi,i∈[1,..,L]

L∑
i=1

‖r−(m)
i−1 ‖

2
2‖∆Wi‖2F s.t. r

−(m+1)
L = r

∗(m)
L , (10)

with m the iteration and r
−(m+1)
L the network output without feedback after the weight update.

Theorem 3 shows that Condition 2 enables the controller to drive the network towards its target r∗L
with MN activation changes, ∆v = v − vff, which combined with the steady-state weight update (9)
result in weighted MN updates ∆Wi (see also App. A.4). When the feedback weights do not have
the correct column space, the weight updates will not be MN. Nevertheless, the following proposition
shows that the weight updates still follow a descent direction given arbitrary feedback weights.
Proposition 4. Assuming stable dynamics and λ, α→ 0, the steady-state weight updates (9) with a
layer-specific learning rate ηi = η/‖ri−1‖22 lie within 90 degrees of the loss gradient direction.

4 Stability of DFC
Until now, we assumed that the network dynamics are stable, which is necessary for DFC, as an
unstable network will diverge, making learning impossible. In this section, we investigate the
conditions on the feedback weights Qi necessary for stability. To gain intuition, we linearize the
network around its feedforward values, assume a separation of timescales between the controller and
the network (τu � τv), and only consider integrative control (kp = 0). This results in the following
dynamics (see App. B for the derivation):

τu
d
dt
u(t) = −(JQ+ αI)u(t) + δL. (11)

Hence, in this simplified case, the local stability of the network around the equilibrium point depends
on the eigenvalues of JQ, which is formalized in the following condition and proposition.

Condition 3. Given the network Jacobian evaluated at the steady state, Jss ,
[
∂r−L
∂v1

, ...,
∂r−L
∂vL

]∣∣∣
v=vss

,

the real parts of the eigenvalues of JssQ are all greater than −α.
Proposition 5. Assuming τu � τv and kp = 0, the network and controller dynamics are locally
asymptotically stable around its equilibrium iff Condition 3 holds.

This proposition follows directly from Lyapunov’s Indirect Method [38]. When assuming the more
general case where τv is not negligible and kp > 0, the stability criteria quickly become less
interpretable (see App. B). However, experimentally, we see that Condition 3 is a good proxy
condition for guaranteeing stability in the general case where τv is not negligible and kp > 0 (see
Section 6 and App. B).

5 Learning the feedback weights
Condition 2 and 3 emphasize the importance of the feedback weights for enabling efficient learning
and ensuring stability of the network dynamics, respectively. As the forward weights, and hence the
network Jacobian, J , change during training, the set of feedback configurations that satisfy Conditions
2 and 3 also change. This creates the need to adapt the feedback weights accordingly to ensure
efficient learning and network stability. We solve this challenge by learning the feedback weights,
such that they can adapt to the changing network during training. We separate forward and feedback
weight training in alternating wake-sleep phases [39]. Note that in practice, a fast alternation between
the two phases is not required (see Section 6).

Inspired by the Weight Mirror method [14], we learn the feedback weights by inserting independent
zero-mean noise ε in the system dynamics:

τv
d
dt
vi(t) = −vi(t) +Wiφ

(
vi−1(t)

)
+Qiu(t) + σεi. (12)
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The noise fluctuations propagated to the output carry information from the network Jacobian, J . To
let e, and hence u, incorporate this noise information, we set the output target r∗L to the average
network output r−L . As the network is continuously perturbed by noise, the controller will try to
counteract the noise and regulate the network towards the output target r−L . The feedback weights
can then be trained with a simple anti-Hebbian plasticity rule with weight decay, which is local in
space and time:

τQ
d
dt
Qi(t) = −vfb

i (t)u(t)T − βQi, (13)

where β is the scale factor of the weight decay term and where we assume that a subset of the noise
input εi enters through the feedback compartment, i.e., vfb

i = Qiu + σfbε
fb
i . The correlation between

the noise in vfb
i and noise fluctuations in u provides the teaching signal for Qi. Theorem 6 shows

under simplifying assumptions that the feedback learning rule (13) drives Qi to satisfy Condition 2
and 3 (see App. C for the full theorem and its proof).

Theorem 6 (Short version). Assume a separation of timescales τv � τu � τQ, α big, kp = 0,
r∗L = r−L , and Condition 3 holds. Then, for a fixed input sample and σ → 0, the first moment of Q
converges approximately to:

lim
σ→0

E[Qss] ∝∼ J
T (JJT + γI)−1, (14)

for some γ > 0. Furthermore, E[Qss] satisfies Conditions 2 and 3, even if α = 0 in the latter.

Theorem 6 shows that under simplifying assumptions, Q converges towards a damped pseudoinverse
of J , which satisfies Conditions 2 and 3. Empirically, we see that this also approximately holds for
more general settings where τv is not negligible, kp > 0, and small α (see Section 6 and App. C).

The above theorem leaves two questions unanswered. First, it assumes that Condition 3 holds,
however, the task of the feedback weight training is to make unstable network dynamics stable,
resulting in a chicken-and-egg problem. The solution we use is to take α big enough to make the
network stable during early training, after which the feedback weights align according to (14) and α
can be decreased. Second, Theorem 6 considers training the feedback weights to convergence over
one fixed input sample. However, in reality many different input samples will be considered during
learning. When the network is linear, J is the same for each input sample and eq. (14) holds exactly.
However, for nonlinear networks, J will be different for each sample, causing the feedback weights
to align with an average of JT (JJT + γI)−1 over many samples.

6 Experiments
We evaluate DFC in detail on toy experiments to showcase that our theoretical results translate to
practice (Section 6.1) and on a modest range of computer vision benchmarks – MNIST classification
and autoencoding [40], and Fashion MNIST classification [41] – to show that DFC can do precise
CA in more challenging settings (Section 6.2). Alongside DFC, we test two variants: (i) DFC-SS
which only updates its feedforward weights Wi after the steady state (SS) of (1) and (4) is reached;
and (ii) DFC-SSA which analytically computes the linearized steady state of (1) and (4) according to
Lemma 1. To investigate whether learning the feedback weights is crucial for DFC, we compare for
all three settings: (i) learning the feedback weights Qi according to (13); and (ii) fixing the feedback
weights to the initialization Qi =

∏L
k=i+1W

T
k , which approximately satisfies Condition 2 and 3 at

the beginning of training (see App. F), denoted with suffix (fixed). For the former, we pre-train the
feedback weights according to (13) to ensure stability. During training, we iterate between 1 epoch of
forward weight training andX epochs of feedback weight training (if applicable), whereX ∈ [1, 2, 3]
is a hyperparameter. We compare all variants to Direct Feedback Alignment (DFA) [42] as a control
for direct feedback connectivity. DFC is simulated with the Euler-Maruyama method, which is the
equivalent of forward Euler for stochastic differential equations [43]. We initialize the network to
its feedforward activations (2) for each datasample and, for computational efficiency, we buffer the
weight updates (5) and (13) and apply them once at the end of the simulation for the considered
datasample. App. E and F provide further details on the implementation of all experiments.2

2PyTorch implementation of all methods is available at https://github.com/meulemansalex/deep_
feedback_control.
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6.1 Empirical verification of the theory

Figure 3 visualizes the theoretical results of Theorems 2 and 3 and Conditions 1, 2 and 3, in an
empirical setting of nonlinear student teacher regression, where a randomly initialized teacher network
generates synthetic training data for a student network. We see that Condition 2 is approximately
satisfied for all DFC variants that learn their feedback weights (Fig. 3A), leading to close alignment
with the ideal weighted MN updates of Theorem 3 (Fig. 3B). For nonlinear networks and linear direct
feedback, it is in general not possible to perfectly satisfy Condition 2 as the network Jacobian J varies
for each datasample, while Qi remains the same. However, the results indicate that feedback learning
finds a configuration for Qi that approximately satisfies Condition 2 for all datasamples. When the
feedback weights are fixed, Condition 2 is approximately satisfied in the beginning of training due
to a good initialization. However, as the network changes during training, Condition 2 degrades
modestly, which results in worse alignment compared to DFC with trained feedback weights (Fig.
3B).

For having GN updates, both Conditions 1 and 2 need to be satisfied. Although we do not enforce
Condition 1 during training, we see in Fig. 3C that it is crudely satisfied, which can be explained by
the saturating properties of the tanh nonlinearity. This is reflected in the alignment with the ideal
GN updates in Fig. 3D that follows the same trend as the alignment with the MN updates. Fig. 3E
shows that all DFC variants remain stable throughout training, even when the feedback weights are
fixed. In App. B, we indicate that Condition 3 is a good proxy for the stability shown in Fig. 3E.
Finally, we see in Fig. 3F that the weight updates of DFC and DFC-SS align well with the analytical
steady-state solution of Lemma 1, confirming that our learning theory of Section 3 applies to the
continuous weight updates (5) of DFC.

Figure 3: Results for nonlinear student-teacher regression task with layer sizes (15-10-10-5), tanh
nonlinearities, a linear output layer, kp = 1.5, λ = 0.05, and α = 0.0015. (A) Ratio between the
norms of Q projected into the row space of J , and Q, with a value of 1 indicating perfect compliance
of Condition 2. (B,D,F) Angle in degrees between the concatenated parameter updates of the whole
network and: (B) the ideal weighted MN parameter updates (Theorem 3); (D) the ideal GN parameter
updates (Theorem 2); and (F) the DFC-SSA parameter updates (see App. F.1 for all definitions). (C)
The standard deviation of the layer norms ‖ri‖2, divided by the average layer norm, with a value of
zero indicating perfect compliance to Condition 1. (E) The maximum real part of the eigenvalues of
the total system dynamics matrix evaluated at equilibrium (see App. F.1), with negative real parts
indicating local stability. For all measures, a window-average is plotted together with the window-std
(shade). Stars indicate overlapping plots.

In Fig. 4, we show that the alignment with MN updates remains robust for λ ∈ [10−3 : 10−1] and
α ∈ [10−4 : 10−1], highlighting that our theory explains the behavior of DFC robustly when the
limit of λ and α to zero does not hold. When we clamp the output target to the label (λ = 0.5),
the alignment with the MN updates decreases as expected (see Fig. 4), because the linearization
of Lemma 1 becomes less accurate and the strong feedback changes the neural activations more
significantly, thereby changing the pre-synaptic factor of the update rules (c.f. eq. 9). However,
performance results on MNIST, provided in Table 2, show that the performance of DFC remains robust
for a wide range of λs and αs, including λ = 0.5, suggesting that DFC can also provide principled
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CA in this setting of strong feedback, which motivates future work to design a complementary theory
for DFC focused on this extreme case.

Figure 4: Comparison of
the alignment between the
DFC weight updates and
the MN updates for
variable values of λ (A)
and α (B), when
performing the nonlinear
student-teacher regression
task described in Fig. 3.
Stars indicate overlapping
plots.

6.2 Performance of DFC on computer vision benchmarks
The classification results on MNIST and Fashion-MNIST (Table 1) show that the performances of
DFC and its variants, but also its controls, lie close to the performance of BP, indicating that they
perform proper CA in these tasks. To see significant differences between the methods, we consider
the more challenging task of training an autoencoder on MNIST, where it is known that DFA fails
to provide precise CA [9, 16, 32]. The results in Table 1 show that the DFC variants with trained
feedback weights clearly outperform DFA and have close performance to BP. The low performance of
the DFC variants with fixed feedback weights show the importance of learning the feedback weights
continuously during training to satisfy Condition 2. Finally, to disentangle optimization performance
from implicit regularization mechanisms, which both influence the test performance, we investigate
the performance of all methods in minimizing the training loss of MNIST.3 The results in Table 1
show improved performance of the DFC method with trained feedback weights compared to BP and
controls, suggesting that the approximate MN updates of DFC can faster descend the loss landscape
for this simple dataset.

Table 1: Test errors (classification) and test loss (autoencoder) corresponding to the epoch with the
best validation result (for 5000 validation samples) over a training of 100 epochs (classification) or 25
epochs (autoencoder). Training loss after 100 epochs (MNIST train loss). We use the Adam optimizer
[44]. Architectures: 3x256 fully connected (FC) tanh hidden layers and softmax output (classification),
256-32-256 FC hidden layers for autoencoder MNIST with tanh-linear-tanh nonlinearities, and a
linear output. Mean ± std (5 random seeds). Best results (except BP) are displayed in bold.

MNIST Fashion-MNIST MNIST-autoencoder MNIST (train loss)

BP 2.08±0.15% 10.60±0.34% 9.42±0.09 · 10−2 1.53±0.19 · 10−7

DFC 2.25±0.094% 11.17±0.27% 11.28±0.18 · 10−2 7.61±0.65 · 10−8

DFC-SSA 2.18±0.16% 11.28±0.27% 11.27±0.09 · 10−2 4.89±1.26 · 10−8

DFC-SS 2.29±0.097% 11.15±0.32% 11.21±0.04 · 10−2 4.80±0.70 · 10−8
DFC (fixed) 2.47±0.12% 11.62±0.30% 33.37±0.60 · 10−2 1.30±0.15 · 10−6

DFC-SSA (fixed) 2.46±0.11% 11.44±0.14% 31.90±0.77 · 10−2 1.73±0.39 · 10−6

DFC-SS (fixed) 2.39±0.22% 11.55±0.42% 32.31±0.37 · 10−2 1.67±0.70 · 10−6

DFA 2.69±0.11% 11.38±0.25% 29.95±0.36 · 10−2 7.09±1.11 · 10−7

Table 2: Test errors on MNIST with variable λ values and fixed α = 0.0015 (left), and with variable
α values and fixed λ = 0.08 (right). Same experimental setting as in Table 1.

λ DFC-SS DFC α DFC-SS DFC

1e−3 2.26±0.11% 2.29±0.04% 1e−4 2.31±0.12% 2.28±0.06%
1e−2 2.25±0.05% 2.31±0.04% 1e−3 2.28±0.15% 2.31±0.11%
1e−1 2.27±0.07% 2.30±0.06% 1e−2 2.26±0.05% 2.32±0.12%
0.5 2.31±0.15% 2.34±0.15% 1e−1 2.28±0.11% 2.34±0.16%

3We used separate hyperparameter configurations, selected for minimizing the training loss.
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7 Discussion
We introduced DFC as an alternative biologically-plausible learning method for deep neural networks.
DFC uses error feedback to drive the network activations to a desired output target. This process
generates a neuron-specific learning signal which can be used to learn both forward and feedback
weights locally in time and space. In contrast to other recent methods that learn the feedback weights
and aim to approximate BP [14, 15, 16, 17, 26], we show that DFC approximates GN optimization,
making it fundamentally different from BP approximations.

DFC is optimal – i.e., Conditions 2 and 3 are satisfied – for a wide range of feedback connectivity
strengths. Thus, we prove that principled learning can be achieved with local rules and without
symmetric feedforward and feedback connectivity by leveraging the network dynamics. This finding
has interesting implications for experimental neuroscientific research looking for precise patterns
of symmetric connectivity in the brain. Moreover, from a computational standpoint, the flexibility
that stems from Conditions 2 and 3 might be relevant for other mechanisms besides learning, such as
attention and prediction [8].

To present DFC in its simplest form, we used direct feedback mappings from the output controller to
all hidden layers. Although numerous anatomical studies of the mammalian neocortex reported the
occurrence of such direct feedback connections [45, 46], it is unlikely that all feedback pathways
are direct. We note that DFC is also compatible with other feedback mappings, such as layerwise
connections or separate feedback pathways with multiple layers of neurons (see App. H).

Interestingly, the three-compartment neuron is closely linked to recent multi-compartment models
of the cortical pyramidal neuron [23, 25, 26, 47]. In the terminology of these models, our central,
feedforward, and feedback compartments, correspond to the somatic, basal dendritic, and apical den-
dritic compartments of pyramidal neurons, respectively (see Fig. 1C). In line with DFC, experimental
observations [48, 49] suggest that feedforward connections converge onto the basal compartment
and feedback connections onto the apical compartment. Moreover, our plasticity rule for the for-
ward weights (5) belongs to a class of dendritic predictive plasticity rules for which a biological
implementation based on backpropagating action potentials has been put forward [37].

Limitations and future work. In practice, the forward weight updates are not exactly equal to GN
or MN updates (Theorems 2 and 3), due to (i) the nonlinearity φ in the weight update rule 5, (ii) non-
infinitesimal values for α and λ, (iii) limited training iterations for the feedback weights, and (iv) the
limited capacity of linear feedback mappings to satisfy Condition 2 for each datasample. Figs. 3 and
4, and Table 2 show that DFC approximates the theory well in practice and has robust performance,
however, future work can improve the results further by investigating new feedback architectures
(see App. H). We note that, even though GN optimization has desirable approximate second-order
optimization properties, it is presently unclear whether these second-order characteristics translate to
our setting with a minibatch size of 1. Currently, our proposed feedback learning rule (13) aims to
approximate one specific configuration and hence does not capitalize on the increased flexibility of
DFC and Condition 2. Therefore, an interesting future direction is to design more flexible feedback
learning rules that aim to satisfy Conditions 2 and 3 without targeting one specific configuration.
Furthermore, DFC needs two separate phases for training the forward weights and feedback weights.
Interestingly, if the feedback plasticity rule (13) uses a high-passed filtered version of the presynaptic
input u, both phases can be merged into one, with plasticity always on for both forward and feedback
weights (see App. C.3). Finally, as DFC is dynamical in nature, it is costly to simulate on commonly
used hardware for deep learning, prohibiting us from testing DFC on large-scale problems such as
those considered by Bartunov et al. [10]. A promising alternative is to implement DFC on analog
hardware, where the dynamics of DFC can correspond to real physical processes on a chip. This would
not only make DFC resource-efficient, but also position DFC as an interesting training method for
analog implementations of deep neural networks, commonly used in Edge AI and other applications
where low energy consumption is key [50, 51].

To conclude, we show that DFC can provide principled CA in deep neural networks by actively
using error feedback to drive neural activations. The flexible requirements for feedback mappings
combined with the strong link between DFC and GN, underline that it is possible to do principled CA
in neural networks without adhering to the symmetric layer-wise feedback structure imposed by BP.
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A Proofs and extra information for Section 3: Learning theory

A.1 Linearized dynamics and fixed points

In this section, we linearize the network dynamics around the feedforward voltage levels v−i (i.e., the
equilibrium of the network when no feedback is present) and study the equilibrium points resulting
from the feedback input from the controller.

Notation. First, we introduce some shorthand notations:

v , [vT1 ...v
T
L ]T (15)

Q , [QT1 ...Q
T
L]T (16)

fi(vi−1) ,Wiφ(vi−1) (17)

∆−vi , vi − v−i (18)

∆vi , vi −Wiφ(vi−1) = vi − vff
i (19)

∆v , [∆vT1 ...∆vTL ]T (20)

Ji,k ,
∂vi
∂vk

∣∣∣∣
vk=v−

k

=
∂fi(..fk+1(vk)..)

∂vk

∣∣∣∣
vk=v−

k

(21)

Ji ,
∂rL
∂vi

∣∣∣∣
vi=v−

i

(22)

J , [J1...JL] =
∂rL
∂∆v

∣∣∣∣
∆v=0

(23)

δL , −λ ∂L
∂rL

∣∣∣∣
rL=r−L

(24)

r∗L , r−L + δL (25)

To investigate the steady state of the network and controller dynamics, we start by proving Lemma 1,
which we restate here for convenience.

Lemma S1. Assuming stable dynamics, a small target stepsize λ, and Wi and Qi fixed, the steady-
state solutions of the dynamical systems (1) and (4) can be approximated by

uss = (JQ+ α̃I)−1δL +O(λ2), vss = vff
ss +Q(JQ+ α̃I)−1δL +O(λ2), (26)

with J , ∂r−L
∂v

∣∣
v=v− the Jacobian of the network output w.r.t. v, evaluated at the network equilibrium

without feedback, δL the output error as defined in (3), vff
i,ss = Wiφ(vi−1,ss), and α̃ = α/(1+αkp).

Proof. The proof is ordered as follows: first, we linearize the network dynamics around the feedfor-
ward equilibrium of (2). Then, we solve the algebraic set of linear equilibrium equations.

With the introduced shorthand notation, we can combine (1) for i = 1, ..., L into a single dynamical
equation for the whole network:

τ
dv
dt

= −∆v +Qu. (27)

By linearizing the dynamics, we can derive the control error e(t) , r∗L − rL(t) as an affine
transformation of ∆v. First, note that

∆−vi = vi −Wiφ(vi−1) +Wiφ(vi−1)− v−i (28)

= ∆vi +Wiφ(v−i−1 + ∆−vi−1)− v−i (29)

= ∆vi + Ji,i−1∆−vi−1 +O(λ2). (30)
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By recursion, we have that

∆−vi = ∆vi +

i−1∑
k=1

Ji,k∆vk +O(λ2), (31)

with ∆v1 = ∆−v1 = v1 − v−1 because the input to the network is not influenced by the controller,
i.e., v0 = v−0 .

The control error given by

e , r∗L − rL = r∗L − r−L + r−L − rL (32)

= δL − JL∆−vL +O(λ2) (33)

= δL − JL
(
∆vL +

L−1∑
k=1

JL,k∆vk
)

+O(λ2) (34)

= δL −
L∑
k=1

Jk∆vk +O(λ2) (35)

= δL − J∆v +O(λ2). (36)

The controller dynamics are given by

u(t) = uint(t) + kpe(t) (37)

τu
d
dt
uint(t) = e(t)− αuint(t) (38)

By differentiating (37) and using uint = u− kpe we get the following controller dynamics for u:

τu
d
dt
u(t) = (1 + αkp)e(t) + kpτu

d
dt
e(t)− αu(t). (39)

The system of equations (27) and (39) can be solved in steady state as follows. From (27) at steady
state, we have

∆vss = Quss. (40)

Substituting ∆vss into the steady state of (39) while using the linearized control error (32) gives

uss = (JQ+ α̃I)−1δL +O(λ2) (41)

∆vss = Q(JQ+ α̃I)−1δL +O(λ2), (42)

with α̃ , α
1+αkp

. Using v = vff + ∆v concludes the proof.

In the next section, we will investigate how this steady-state solution can result in useful weight
updates (plasticity) for the forward weights Wi.

A.2 DFC approximates Gauss-Newton optimization

In this subsection, we will investigate the steady state (42) for α→ 0 and link the resulting weight
updates to Gauss-Newton (GN) optimization. Before proving Theorem 2, we need to introduce and
prove some lemmas. First, we need to show that limα→0 ∆vss = J†δL under Condition 2, with J†
the Moore-Penrose pseudoinverse of J [52, 53]. This is done in the following Lemma.
Lemma S2. Assuming J has full rank,

lim
α→0

Q(JQ+ αI)−1 = J† (43)

iff Condition 2 holds, i.e., Col(Q) = Row(J).

Proof. We begin by stating the Moore-Penrose conditions [53]:
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Condition S1. B = A† iff

1. ABA = A

2. BAB = B

3. AB = (AB)T

4. BA = (BA)T

In this proof, we need to consider 2 general cases: (i) J has full rank and Q does not and (ii) Q and J
have both full rank. As JT and Q have much more rows than columns, they will almost always be of
full rank, however, we consider both cases for completeness.

In case (i), where Q has lower rank than J , we have that rank
(
Q(JQ + αI)−1

)
≤ rank(Q). As

rank(J†) = rank(JT ), Q(JQ + αI)−1 can never be the pseudoinverse of J , thereby proving that
a necessary condition for (43) is that rank(Q) ≥ rank(J) (note that this condition is satisfied by
Condition 2). Now, that we showed that it is a necessary condition that Q is full rank (as J is full
rank by assumption of the lemma) for eq. (43) to hold, we proceed with the second case.

In case (ii), where Q and JT have both full rank, we need to prove under which conditions on Q,
S , limα→0Q(JQ + αI)−1 is equal to J†. As Q and JT have both full rank, JQ is of full rank
and we have

JS = lim
α→0

JQ(JQ+ αI)−1 = I. (44)

Hence, conditions S1.1, S1.2 and S1.3 are trivially satisfied:

1. JSJ = IJ = J

2. SJS = SI = S

3. JS = I = IT = (JS)T

Condition S1.4 will only be satisfied under certain constraints on Q. We first assume Condition 2
holds to show its sufficiency after which we continue to show its necessity.

Consider UJ as an orthogonal basis of the column space of JT . Then, we can write

J = MJU
T
J (45)

for some full rank square matrix MJ . As we assume Condition 2 holds, we can similarly write Q as

Q = UJMQ (46)

for some full rank square matrix MQ. Condition S1.4 can now be written as

SJ = Q(JQ)−1J (47)

= UJMQ(MJMQ)−1MJU
T
J (48)

= UJU
T
J (49)

= (SJ)T , (50)

showing that S is indeed the pseudoinverse of J if Condition 2 holds, proving its sufficiency.

For showing the necessity of Condition 2, we use a proof by contradiction. We now assume that
Condition 2 does not hold and hence the column space of Q is not equal to that of J . Similar as
before, consider UQ and orthogonal basis of the column space of Q. Furthermore, consider the square
orthogonal matrix ŪJ , [UJ ŨJ ] with UJ as defined in (45) and ŨJ orthogonal on UJ . We can now
decompose Q into a part inside the column space of JT and outside of that column space:

Q = UQMQ (51)

= ŪJ Ū
T
J UQMQ (52)

= UJPQ + ŨJ P̃Q, (53)
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with MQ a square full rank matrix, PQ , UTJ UQMQ, and P̃Q , ŨTJ UQMQ. The first part of (51)
represents the part of Q inside the column space of JT and the second part represents the part of Q
outside of this column space. For clarity, we assume that PQ is full rank4, which is true in all but
degenerate cases. Note that P̃Q is different from zero, as we assume Condition 2 does not hold in this
proof by contradiction. Using this decomposition of Q, we can write SJ used in Condition S1.4 as

SJ = Q(JQ)−1J (54)

= (UJPQ + ŨJ P̃Q)(MJPQ)−1(MJU
T
J ) (55)

= UJU
T
J + ŨJ P̃QP

−1
Q UTJ . (56)

The first part of the last equation is always symmetric, hence Condition S1.4 boils down to the second
part being symmetric:

ŨJ P̃QP
−1
Q UTJ = UJP

−T
Q P̃TQ Ũ

T
J (57)

⇒ ŨTJ ŨJ P̃QP
−1
Q UTJ = ŨTJ UJP

−T
Q P̃TQ Ũ

T
J (58)

⇒ P̃QP
−1
Q UTJ = 0 (59)

⇒ UJP
−T
Q P̃TQ = 0. (60)

As UJ has a zero-dimensional null space and PQ is full rank, S1.4 can only hold when P̃Q = 0. This
contradicts with our initial assumption in this proof by contradiction, stating that Condition 2 does
not hold and consequently Q has components outside of the column space of J , thereby proving that
Condition 2 is necessary.

Theorem 2 states that the updates for Wi in DFC at steady-state align with the updates Wi prescribed
by the GN optimization method for a feedforward neural network. We first formalize a feedforward
fully connected neural network.
Definition S1. A feedforward fully connected neural network with L layers, input dimension n0,
output dimension nL and hidden layer dimensions ni, 0 < i < L is defined by the following sequence
of mappings:

ri = φ(Wiri−1), 0 < i < L (61)
rL = φL(WirL−1), (62)

with φ and φL activation functions, r0 the input of the network, and rL the output of the network.

The Lemma below shows that the network dynamics (1) at steady-state are equal to a feedforward
neural network corresponding to Definition S1 in the absence of feedback.
Lemma S3. In the absence of feedback (u(t) = 0), the system dynamics (1) at steady-state are
equivalent to a feedforward neural network defined by Definition S1.

Proof. The proof is trivial upon noting that Qu = 0 without feedback and computing the steady-state
of (1) using ri , φ(vi).

Following the notation of eq. (2), we denote with r−i the firing rates of the network in steady-state
when feedback is absent, hence corresponding to the activations of a conventional feedforward neural
network. The following Lemma investigates what the GN parameter updates are for a feedforward
neural network. Later, we then show that the updates at equilibrium of DFC approximate these GN
updates. For clarity, we assume that the network has only weights and no biases in all the following
theorems and proofs, however, all proofs can be easily extended to comprise both weights and biases.
First, we need to introduce some new notation for vectorized matrices.

~Wi , vec(Wi) (63)

W̄ , [ ~WT
1 ... ~W

T
L ]T , (64)

where vec(Wi) denotes the concatenation of the columns of Wi in a column vector.
4If PQ is not of full rank, JQ is not of full rank and hence limα→0(JQ + αI) also not. Consequently,

limα→0Q(JQ+αI)−1 will projectQ onto something of lower rank, making it impossible for S to approximate
J†, thereby showing that it is necessary that PQ is full rank.
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Lemma S4. Assuming an L2 task loss and Condition 1 holds, the Gauss-Newton parameter updates
for the weights of a feedforward network defined by Definition S1 for a minibatch size of 1 is given by

∆W̄GN =
1

2λ‖r‖22
RJ†δL, (65)

with R defined in eq. (70).

Proof. Consider the Jacobian of the output w.r.t. the network weights W (in vectorized form as
defined above), evaluated at the feedforward activation:

JW̄ ,
∂rL
∂W̄

∣∣∣∣
rL=r−L

. (66)

For a minibatch size of 1, the GN update for the parameters W̄ , assuming an L2 output loss, is given
by [35, 54]

∆W̄GN = J†
W̄

(rtrue
L − r−L ) =

1

2λ
J†
W̄
δL, (67)

with rtrue
L the true supervised output (e.g., the class label). The remainder of this proof will manipulate

expression (67) in order to reach (65). Using J ~Wi
, ∂rL

∂ ~Wi

∣∣
rL=r−L

, JW̄ can be restructured as:

JW̄ = [J ~W1
...J ~WL

]. (68)

Moreover, J ~Wi
= Ji

∂vi
∂ ~Wi

∣∣
vi=v−

i

. Using Kronecker products, this becomes5

J ~Wi
= Ji

(
(r−i−1)T ⊗ I

)
. (69)

Using the structure of JW̄ , this leads to

JW̄ = JRT (70)

RT ,


(r−0 )T ⊗ I 0 . . . 0

0 (r−1 )T ⊗ I . . . 0
... 0

. . . 0
0 . . . 0 (r−L−1)T ⊗ I

 (71)

with the dimensions of I such that the equality JW̄ = JRT holds. What remains to be proven is that
J†
W̄

= 1
‖r‖22

RJ†, assuming that Condition 1 holds and knowing that JW̄ = JRT . To prove this, we

need to know under which conditions (JRT )† = (RT )†J†. The following condition specifies when
a pseudoinverse of a matrix product can be factorized [55].

Condition S2. The Moore-Penrose pseudoinverse of a matrix product (AB)† can be factorized as
(AB)† = B†A† if one of the following conditions hold:

1. A has orthonormal columns

2. B has orthonormal rows

3. B = AT

4. A has all columns linearly independent and B has all rows linearly independent

In our case, J has more columns than rows, hence conditions S2.1 and S2.4 can never be satisfied.
Furthermore, condition S2.3 does not hold, which leaves us with condition S2.2. To investigate
whether RT has orthonormal rows, we compute RTR:

RTR =

‖r
−
0 ‖22I . . . 0
...

. . .
...

0 . . . ‖r−L−1‖22I

 (72)

5The Kronecker product leads to the following equality: vec(ABC) = (CT ⊗A)vec(B). Applied to our
situation, this leads to the following equality: vi = Wiri−1 = (rTi−1 ⊗ I) ~Wi
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If Condition 1 holds, we have ‖r−0 ‖22 = . . . = ‖r−L−1‖22 , ‖r‖22 such that:

RTR = ‖r‖22I. (73)

Hence, 1
‖r‖2R

T has orthonormal rows iff Condition 1 holds. From now on, we assume that Condition
1 holds. Next, we will compute (RT )†. Consider RT = UΣV T , the singular value decomposition
(SVD) of RT . Its pseudoinverse is given by (RT )† = V Σ†UT . As the SVD is unique and 1

‖r‖2R
T

has orthonormal rows, we can construct the SVD manually:

RT = I︸︷︷︸
=U

[‖r‖2I 0]︸ ︷︷ ︸
=Σ

[ 1
‖r‖2R

T

Ṽ T

]
︸ ︷︷ ︸

=V T

, (74)

with Ṽ T being a basis orthonormal to 1
‖r‖2R

T . Hence, we have that

(RT )† = V Σ†UT =
1

‖r‖22
R. (75)

Putting everything together and assuming that Condition 1 holds, we have that

∆W̄GN =
1

2λ
J†
W̄
δL =

1

2λ‖r‖22
RJ†δL, (76)

thereby concluding the proof.

Now, we are ready to prove Theorem 2.
Theorem S5 (Theorem 2 in main manuscript). Assuming Conditions 1 and 2 hold, J is full rank, the
task loss L is a L2 loss, and λ, α→ 0 , then the following steady-state (ss) updates for the forward
weights

∆Wi = η(vi,ss − vff
i,ss)r

T
i−1,ss, (77)

with η a stepsize parameter, align with the weight updates for Wi for the feedforward network (2)
prescribed by the GN optimization method with a minibatch size of 1.

Proof. Lemma S3 shows that the dynamical network (1) at equilibrium in the absence of feedback
is equivalent to a feedforward neural network. Lemma S4 provides the GN update step for such a
feedforward network, and hence also for our dynamical network. To prove Theorem 2, we have
to show that limα,λ→0 η(vSi,ss − vBi,ss)r

T
i−1,ss is aligned with the GN update. First, we combine the

updates ∆Wi into their concatenated vectorized form:

∆Wi = η∆vi,ssr
T
i−1,ss (78)

∆ ~Wi = (ri−1,ss ⊗ I)∆vi,ss (79)

∆W̄ =

∆ ~W1

...
∆ ~WL

 = ηRss∆vss (80)

with Rss as defined in (70), but then with ri,ss instead of r−i . From the linearized dynamics (42),
combined with Lemma S2 while assuming J is of full rank, we have that

lim
α→0

∆vss = J†δL +O(λ2) (81)

iff Condition 2 holds. Taking η = 1
2λ‖r‖22

and assuming an L2 task loss, we have (using Lemma S4):

lim
α→0

∆W̄ =
1

2λ‖r‖22
Rss∆vss =

1

2λ‖r‖22
RssJ

†2λ(rtrue
L − r−L ) +O(λ2) (82)

lim
α,λ→0

∆W̄ =
1

‖r‖22
RJ†(rtrue

L − r−L ) (83)

where we used that limλ→0Rss = R. By comparing limα,λ→0 ∆W̄ to Lemma S4, we see that it
is equal to the GN update for W̄ for a minibatchsize of 1, iff Condition 1 and 2 hold and for an
appropriate learning rate η = 1

2λ‖r‖22
. As η is a scalar, we have that for arbitrary η, limα,λ→0 ∆W̄ is

proportional to the Gauss-Newton parameter update, thereby concluding the proof.
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This theorem shows that for tasks with an L2 loss and when Conditions 1 and 2 hold, DFC approxi-
mates Gauss-Newton updates with a minibatch size of 1, which becomes an exact equivalence in the
limit of α and λ to zero.

A.3 DFC uses minimum norm updates

To remove the need for Condition 1 and a L2 task loss,6 we show that the learning behavior of
our network is mathematically sound under more relaxed conditions. Theorem 3 (restated below
for convenience) shows that for arbitrary loss functions and without the need for Condition 1, our
synaptic plasticity rule can be interpreted as a weighted minimum norm (MN) parameter update
for reaching the output target, assuming linearized dynamics (which becomes exact in the limit of
λ→ 0).
Theorem S6. Assuming stable dynamics, Condition 2 holds and λ, α→ 0, the steady-state weight
updates (9) are proportional to the weighted MN updates of Wi for letting the feedforward output r−L
reach r∗L, i.e., the solution to the following optimization problem:

arg min
∆Wi,i∈[1,..,L]

L∑
i=1

‖r−(m)
i−1 ‖

2
2‖∆Wi‖2F s.t. r

−(m+1)
L = r

∗(m)
L , (84)

with m the iteration and r
−(m+1)
L the network output without feedback after the weight update.

Proof. Rewriting the optimization problem using

M =

‖r
−
0 ‖2I . . . 0

. . .
0 . . . ‖r−L−1‖2I

 (85)

and the concatenated vectorized weights W̄ , we get:

arg min
∆W̄

‖M∆W̄‖22 (86)

s.t. r
−(m+1)
L = r

∗(m)
L (87)

Linearizing the feedforward dynamics around the current parameter values W̄ (m) and using Lemma
S3, we get:

r
−(m+1)
L = r

−(m)
L + JW̄∆W̄ +O(‖∆W̄‖22). (88)

We will now assume that O(‖∆W̄‖22) vanishes in the limit of λ→ 0, relative to the other terms in
this Taylor expansion, and check this assumption at the end of the proof. Using (88) to rewrite the
constraints (87), we get:

r
−(m+1)
L = r

∗(m)
L (89)

⇔ JW̄∆W̄ = δL. (90)

To solve the optimization problem, we construct its Lagrangian:

L = ‖M∆W̄‖22 + µT (JW̄∆W̄ − δL), (91)

with µ the Lagrange multipliers. As this is a convex optimization problem, the optimal solution can
be found by solving the following set of equations:(

∂L
∂µ

)T
= JW̄∆W̄ ∗ − δL = 0 (92)(

∂L
∂∆W̄

)T
= 2M2∆W̄ ∗ + JTW̄µ∗ = 0 ⇒ ∆W̄ ∗ = −1

2
M−2JTW̄µ∗ (93)

⇒ µ∗ = −2(JW̄M
−2JTW̄ )−1δL (94)

⇒ ∆W̄ ∗ = M−2JTW̄
(
JW̄M

−2JTW̄
)−1

δL = M−1
(
JW̄M

−1
)†
δL, (95)

6The Gauss-Newton method can be generalized to other loss functions by using the Generalized Gauss-
Newton method [56].
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assuming JW̄M−2JT
W̄

is invertible, which is highly likely, as JW̄ is a skinny horizontal matrix
and M full rank. As O(‖∆W̄‖2) = O(λ) and O(‖∆W̄‖22) = O(λ2), the Taylor expansion error
O(‖∆W̄‖22) vanishes in the limit of λ → 0, relative to the zeroth and first order terms, thereby
confirming our assumption.

Now, we proceed by factorizing
(
JW̄M

−1
)†

into J† and some other term, similar as in Lemma S4.
First, we note that JW̄M−1 = JRTM−1, with RT defined in eq. (70). Furthermore, we have that(
RTM−1

)(
RTM−1

)T
= I , hence RTM−1 has orthonormal rows. Following Condition S2, we

can factorize
(
JW̄M

−1
)†

as follows:(
JW̄M

−1
)†

=
(
JRTM−1

)†
=
(
RTM−1

)†
J† = M−1RJ† (96)

⇒ ∆W̄ ∗ = M−2RJ†δL (97)

⇒ ∆W ∗i =
1

‖ri−1‖22

[
J†δL

]
i
rTi−1, (98)

with
[
J†δL

]
i

the entries of the vector J†δL corresponding to vi. We used
(
RTM−1

)†
= M−1R,

which has a similar derivation as the one used for
(
RT
)†

in Lemma S4.

We continue by showing that the weight update at equilibrium of DFC aligns with the MN solutions
∆W ∗i . Adapting (83) from Theorem 2 to arbitrary loss functions, assuming 2 holds, and taking a
layer-specific learning rate ηi = 1

‖ri−1‖22
, we get that

lim
α,λ→0

∆Wi =
1

‖ri−1‖22

[
J†δL

]
i
rTi−1, (99)

for which we used the same notation as in eq. (96) to divide the vector J†δL in layerwise components.
As the DFC update (99) is equal to the MN solution (96), we can conclude the proof. Note that
because we used layer-specific learning rates ηi = 1

‖ri−1‖22
only the layerwise updates ∆Wi and

∆W ∗i align, not their concatenated versions ∆W̄ and ∆W̄ ∗.

Finally, we will remove Condition 2 and show in Proposition 4 (here repeated in Proposition S8 for
convenience) that the weight updates still follow a descent direction for arbitrary feedback weights.
Before proving Proposition 4, we need to introduce and prove the following Lemma.
Lemma S7. Assuming J̃1 is full rank,

lim
α→0

Q(JQ+ αI)−1 = UQ

[
J̃−1

1
0

]
V TQ , (100)

with UQ, VQ the left and right singular vectors of Q and J̃1 as defined as follows: consider
J̃ = V TQ JUQ, the linear transformation of J by the singular vectors of Q which can be written in
blockmatrix form J̃ = [J̃1J̃2] with J̃1 a square matrix.

Proof. For the proof, we use the singular value decomposition (SVD) of Q and use it to rewrite
Q(JQ+ α̃I)−1. The SVD is given by Q = UQΣQV

T
Q , with VQ and UQ square orthogonal matrices

and ΣQ a rectangular diagonal matrix:

ΣQ =

[
ΣDQ
0

]
, (101)

with ΣDQ a square diagonal matrix, containing the singular values of Q. Now, let us define J̃ as

J̃ , V TQ JUQ, (102)

such that J = VQJ̃U
T
Q . J̃ can be structured into J̃ = [J̃1J̃2] with J̃1 a square matrix. Now, we can

rewrite Q(JQ+ αI)−1 as

Q(JQ+ αI)−1 = UQΣQV
T
Q

(
VQJ̃U

T
QUQΣQV

T
Q + αI

)−1
(103)

= UQΣQ
(
J̃ΣQ + αI)−1V TQ (104)

= UQ

[
ΣDQ
0

] (
J̃1ΣDQ + αI

)−1
V TQ . (105)
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Assuming J̃1 and ΣDQ to be invertible (i.e., no zero singular values), this leads to:

lim
α→0

Q(JQ+ αI)−1 = UQ

[
J̃−1

1
0

]
V TQ , (106)

thereby concluding the proof.

This lemma shows clearly that limα→0Q(JQ + αI)−1 is a generalized inverse of the forward
Jacobian J , constrained by the column space of Q, which is represented by UQ.

Proposition S8. Assuming stable network dynamics and λ, α→ 0, the steady-state weight updates
∆Wi,ss (9) with a layer-specific learning rate ηi = η/‖ri−1‖22 lie always within 90 degrees of the
loss gradient direction.

Proof. First, we show that the steady-state weight update lies within 90 degrees of the loss gradient,
after which we continue to prove convergence for linear networks. We define ∆vss , vss − vff

ss,
which allows us to rewrite the steady-state update (9) as

∆W̄ss = ηM−2Rss∆vss, (107)

where we use the vectorized notation, Rss defined in eq. (70) with steady-state activations, and M
defined in eq. (85) to represent the layer-specific learning rate ηi = η/‖ri−1‖22. Using Lemma 1 and
S7, we have that

lim
α→0

∆vss = UQ

[
J̃−1

1
0

]
V TQ δL. (108)

Using the same vectorized notation, the negative gradient of the loss with respect to the network
weights (i.e., the BP updates) can be written as:

∆W̄BP = ηRJT δL. (109)

To show that the steady-state weight update lies within 90 degrees of the loss gradient, we prove that
their inner product is greater than zero in the limit of λ, α→ 0:

lim
λ,α→0

〈∆W̄BP ,∆W̄ss〉 = lim
λ,α→0

η2δTLJR
TM−2Rss∆vss (110)

= lim
λ→0

η2δTLVQJ̃

[
J̃−1

1
0

]
V TQ δL (111)

= lim
λ→0

η2δTLδL > 0, (112)

where we used that limλ→0R
TM−2Rss = I and took η ∝ 1/λ to have a limit different from zero,

as δL scales with λ.

A.4 An intuitive interpretation of Condition 2

In the previous sections, we showed that Condition 2 is needed to enable precise CA through GN or
MN optimization. Here, we discuss a more intuitive interpretation of why Condition 2 is needed.

DFC has three main components that influence the feedback signals given to each neuron. First, we
have the network dynamics (1) (here repeated for convenience).

τv
d
dt
vi(t) = −vi(t) +Wiφ

(
vi−1(t)

)
+Qiu(t) 1 ≤ i ≤ L. (113)

The first two terms −vi(t) + Wiφ
(
vi−1(t)

)
pull the neural activation vi close to its feedforward

compartment vff
i , while the third term Qiu(t) provides an extra push such that the network output is

driven to its target. This interplay between pulling and pushing is important, as it makes sure that vi
and vff

i remain as close as possible together, while driving the output towards its target.
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Second, we have the feedback weights Q. As Q is of dimensions
∑L
i=1 ni × nL, with ni the layer

size, it has always much more rows than columns. Hence, the few but long columns of Q can
be seen as the ‘modes’ that the controller u can use to change network activations v. Due to the
low-dimensionality of u compared to v, Qu cannot change the activations v in arbitrary directions,
but is constrained by the column space of Q, i.e., the ‘modes’ of Q.

Third, we have the feedback controller, that through its own dynamics, combined with the network
dynamics (1) and Q, selects an ‘optimal’ configuration for u, i.e., uss = (JQ)−1δL, that selects
and weights the different modes (columns) of Q to push the output to its target in the ‘most efficient
manner’.

To make ‘most efficient manner’ more concrete, we need to define the nullspace of the network. As
the dimension of v is much bigger than the output dimension, there exist changes in activation ∆v
that do not result in a change of output ∆rL, because they lie in the nullspace of the network. In a
linearized network, this is reflected by the network Jacobian J , as we have that ∆rL = J∆v. As J is
of dimensions nL ×

∑L
i=1 ni, it has many more columns than rows and thus a non-zero nullspace.

When ∆v lies inside the nullspace of J , it will result in ∆rL = 0. Now, if the column space of Q
overlaps partially with the nullspace of J , one could make u, and hence ∆v = Qu, arbitrarily big,
while still making sure that the output is pushed exactly to its target, when the ‘arbitrarily big’ parts of
∆v lie inside the nullspace of J and hence do not influence rL. Importantly, the feedback controller
combined with the network dynamics ensure that this does not happen, as uss = (JQ)−1δL selects
the smallest possible uss to push the output to its target.

However, when the column space of Q partially overlaps with the nullspace of J , there will inevitably
be parts of ∆v that lie inside the nullspace of J , even though the controller selects the smallest
possible uss. This can easily be seen as in general, each column of Q overlaps partially with the
nullspace of J , so ∆v = Qu, which is a linear combination of the columns of Q, will also overlap
partially with the nullspace of J . This is where Condition 2 comes into play.

Condition 2 states that the column space of Q is equal to the row space of J . When this condition is
fulfilled, the column space of Q does not overlap with the nullspace of J . Hence, all the feedback
Qu produces a change in the network output and no unnecessary changes in activations ∆v take
place. With Condition 2 satisfied, the occurring changes in activations ∆v are MN, as they lie fully
in the row-space of J and push the output exactly to its target. This interpretation lies at the basis of
Theorem 3 and is also an important part of Theorem 2.

A.5 Gauss-Newton optimization with a mini-batch size of 1

In this section, we review the GN optimization method and discuss the unique properties that arise
when a mini-batch size of 1 is taken.

Review of GN optimization. Gauss-Newton (GN) optimization is an iterative optimization method
used for non-linear regression problems with an L2 output loss, defined as follows:

arg min
θ

L =
1

2

B∑
b=1

‖δ(b)‖22 (114)

δ(b) , y(b) − r(b), (115)

with B the minibatch size, δ the regression error, r the model output, and y the corresponding
regression target. There exist two main derivations of the GN optimization method: (i) through an
approximation of the Newton-Raphson method and (ii) through linearizing the parametric model that
is being optimized. We focus on the latter, as this derivation is closely connected to DFC.

GN is an iterative optimization method and hence aims to find a parameter update ∆θ that leads to a
lower regression loss:

θ(m+1) ← θ(m) + ∆θ, (116)
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with m indicating the iteration number. The end goal of the optimization scheme is to find a local
minimum of L, hence, finding θ∗ for which holds

0
!
=
∂L
∂θ

∣∣∣T
θ=θ∗

= JTθ δ (117)

Jθ ,
∂r

∂θ

∣∣∣
θ=θ∗

, (118)

with δ and r the concatenation of all δ(b) and r(b), respectively. To obtain a closed-form expression
for θ∗ that fulfills eq. (117) approximately, one can make a first-order Taylor approximation of the
parameterize model around the current parameter setting θ(m):

r(m+1) ≈ r(m) + Jθ∆θ (119)

δ(m+1) = y − r(m+1) ≈ δ(m) − Jθ∆θ. (120)
Filling this approximation into eq. (117), we get:

∂L
∂θ
≈ JTθ

(
δ(m) − Jθ∆θ

)
= 0 (121)

⇔ JTθ Jθ∆θ = JTθ δ
(m). (122)

In an under-parameterized setting, i.e., the dimension of δ is bigger than the dimension of θ, JTθ Jθ
can be interpreted as an approximation of the loss Hessian matrix used in the Newton-Raphson
method and is known as the Gauss-Newton curvature matrix. In the under-parameterized setting,
JTθ Jθ is invertible, leading to the update

∆θ =
(
JTθ Jθ

)−1
JTθ δ

(m) (123)

∆θ = J†θδ
(m), (124)

with J†θ the Moore-Penrose pseudoinverse of Jθ. In the under-parameterized setting, eq. (122) can
be interpreted as a linear least-squares regression for finding a parameter update ∆θ that results
in a least-squares solution on the linearized parametric model (119). Until now we considered the
under-parameterized case. However, DFC is related to GN optimization with a mini-batch size of 1,
which concerns the over-parameterized case.

GN optimization with a mini-batch size of 1. When the minibatch size B = 1, the dimension
of δ is smaller than the dimension of θ in neural networks, hence we need to consider the over-
parameterized case of GN [36, 57]. Now, the matrix JTθ Jθ is not of full rank and hence an infinite
amount of solutions exist for eq. (122). To enforce a unique solution for the parameter update ∆θ, a
common approach is to take the MN solution, i.e., the smallest possible solution ∆θ that satisfies
(122). Using the MN properties of the Moore-Penrose pseudoinverse, this results in:

∆θ = J†θδ
(m). (125)

Although the solution has the same form as before (124), its interpretation is fundamentally different,
as we did not use a linear least-squares solution, but a MN solution instead. In the under-parameterized
case considered before, the parameter update ∆θ will not be able to drive δ(m+1) to zero (in the
linearized model). In the over-parameterized case however, there exist many solutions for ∆θ that
drive δ(m+1) exactly to zero, and GN picks the MN solution (125).

With this interpretation, we see clearly the connection to DFC. In DFC, the feedback controller drives
the network activations (i.e., finds an ‘activation update’ solution) such that the output of the network
reaches its target r∗L (i.e., the error δ(m+1) is driven to zero). When Condition 2 holds, this activation
update solution is the MN solution. Furthermore, when Condition 1 holds, this MN activation update
results also in a MN parameter update ∆Wi,ss (9).

DFC updates with larger batch sizes. For computational efficiency, we average the DFC updates
over a minibatch size bigger than 1. However, this averaging over a minibatch is distinct from doing
Gauss-Newton optimization on a minibatch. The GN iteration with minibatch size B is given by

∆W̄GN = lim
γ−→0

[ B∑
b=1

J
(b)T

W̄
J

(b)

W̄
+ γI

]−1[ B∑
b=1

J
(b)T

W̄
δ

(b)
L

]
, (126)
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with J (b)

W̄
the Jacobian of the output w.r.t. the concatenated weights W̄ for batch sample b, and γ a

damping parameter. Note that we accumulate the GN curvature J (b)T

W̄
J

(b)

W̄
over all minibatch samples

before taking the inverse.

When the assumptions of Theorem 2 hold, the DFC updates with a minibatch size B can be written
by

∆W̄ = lim
γ−→0

B∑
b=1

[(
J

(b)T

W̄
J

(b)

W̄
+ γI

)−1
J

(b)T

W̄
δ

(b)
L

]
(127)

=

B∑
b=1

[
J

(b)†
W̄

δ
(b)
L

]
. (128)

For B = 1, the DFC update (127) overlaps with the GN update (126). However, for B > 1 these are
not equal anymore, due to the order of summation and inversion being reversed.

A.6 Effects of the nonlinearity φ in the weight update

In this section, we study in detail the experimental consequences of using the nonlinear learning rule
(2.3) instead of the linear learning rule (9). First, we investigate the case where the assumptions in
Theorem 3 are perfectly satisfied and then we investigate the more realistic case where the assumptions
are not perfectly satisfied.

When considering the ideal case where Condition 2 is perfectly satisfied and in the limit of λ and α
to zero, MN updates (214) are obtained if the linear learning rule is used, and the following updates
are obtained when the nonlinear learning rule is used:

∆W̄ = RDJT (JJT )−1δL, (129)

with D a diagonal matrix with ∂φ(vj)/∂(vj) for each neuron in the network on its diagonal and
R as defined in eq. (214). For this ideal case, we performed experiments on MNIST comparing
the linear to the nonlinear learning rules, and obtained a test error of 2.18±0.14% and 2.11±0.10%,
respectively. These experiments demonstrate that for this ideal case the nonlinear learning rule (2.3)
has no significant benefit over the linear learning rule (9).

On the other hand, to investigate the influence of the nonlinear learning rule for the practical case
where Condition 2 is not perfectly satisfied, we performed a new hyperparameter search on MNIST
for DFC-SSA with the linear learning rule (9). This resulted in a test error of 5.28±0.14%. Comparing
this result with the corresponding test performance in Table 1 (2.29±0.097% test error), we conclude
that DFC benefits from the introduction of the chosen nonlinearities in the learning rule (2.3), as the
results improve significantly. Hence, we can infer that this increase in performance is due to the way
the introduction of the nonlinearity in the learning rule compensates for when the feedback weights
do not perfectly satisfy Condition 2.

Lastly, to investigate where this performance gap originates from, we performed another toy experi-
ment similar to Fig. 3 (see Fig. S1) for the linear versus nonlinear learning rule in DFC. The new
results show that the updates resulting from the nonlinear learning rule are much better aligned with
the MN and GN updates, compared to the linear learning rule, explaining its better performance.
Overall, we conclude that introducing the nonlinearity in the learning rule, which prevents saturated
neurons from updating their weights, is a useful heuristic to improve the alignment of DFC with the
MN and GN updates and consequently improve its performance, when Condition 2 is not perfectly
satisfied.

A.7 Relation between continuous DFC weight updates and steady-state DFC weight updates

All developed learning theory in section 3 considers an update ∆Wi at the steady-state of the network
(1) and controller (4) dynamics instead of a continuous update as defined in (5). Fig. 3F shows that
the accumulated continuous updates (5) of DFC align well with the analytical steady-state updates.
Here, we indicate why this steady-state update is a good approximation of the accumulated continuous
updates (5). We consider two main reasons: (i) the network and controller dynamics settle quickly to
their steady-state and (ii) when the dynamics are not settled yet, they oscillate around the steady-state,
thereby causing oscillations to cancel each other out approximately.
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Figure S1: Layer-wise comparison of the angle alignment between the DFC updates and the GN
and MN updates, for the linear and nonlinear learning rule variants, when performing nonlinear
student-teacher regression task.

Addressing the first reason, consider an input that is presented to the network from time T1 until T2

and that the network and controller dynamics converge at Tss < T2. The change in weight prescribed
by (5) is then equal to∫ T2

T1

dWi =

∫ Tss

T1

dWi +
T2 − Tss
τW

(
φ(vi,ss)− φ(vff

i,ss)
)
rTi−1,ss, (130)

where we assumed a separation of timescales, i.e., Wi is considered constant over the integration
interval. If the dynamics settle quickly, i.e., Tss − T1 � T2 − Tss, the second term in the right-
hand-side (RHS) dominates and we have that

∫ T2

T1
dWi ≈ η

(
φ(vi,ss) − φ(vff

i,ss)
)
rTi−1,ss with η =

(T2 − Tss)/τW .

Addressing the second reason, note that Fig. 1D shows qualitatively that the dynamics oscillate
briefly around the steady-state before settling. The first integral term in the RHS of eq. (130)
hence integrates over oscillating variables around the steady-state value. These oscillations will
partially cancel each other out in the integration, causing

∫ Tss
T1

dWi to be approximately equal to
η
(
φ(vi,ss)− φ(vff

i,ss)
)
rTi−1,ss for some η.

A.8 DFC is compatible with various controller types

Throughout the main manuscript, we focused on a proportional-integral (PI) controller. However, the
DFC framework is compatible with various other controller types. In the following, we show that the
results on learning theory (Section 3 can be generalized to pure integral control, pure proportional
control or any combination thereof with derivative control added. Note that for each new controller
type, a new stability analysis is needed and whether the feedback learning rule is still compatible
with the controller also needs to be checked, which we leave to future work.

A.8.1 Pure integral control

For pure integral control, the steady-state solutions of Lemma 1 still apply, with α̃ = α. Hence,
all learning theory results of Section 3 directly apply to this case. Furthermore, Proposition 5 and
Theorem 6 are already designed for pure integral control.
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A.8.2 Pure proportional control

By making a first-order Taylor approximation of the network dynamics with only proportional control
(putting KI = 0 in eq. (4)), we obtain the following steady-state solution:

vss = vff
ss + (QJ +

1

kp
I)−1QδL +O(λ2), (131)

with kp the proportional gain, i.e., u = kpe. When comparing with eq. (6), we see that the steady-
state solution only with proportional control has a similar structure to the one with PI control, with
α̃ replaced by 1

kp
. Note, however, that the damped inverse of QJ is taken instead of JQ. By using

a similar proof technique as for Lemma S2, we can show that limkp→∞(QJ + 1
kp
I)−1Q = J† iff

Condition 2 holds.7 Consequently, Theorems 2 and 3 and Proposition 4 hold also for proportional
control, if the limit of α to zero is replaced by the limit of kp to infinity. Furthermore, the main
intuitions of Theorem 6 for training the feedback can be applied to proportional control, given that
one finds a way to keep the network stable during the initial feedback weights training phase.

Despite these theoretical similarities between proportional and PI control in DFC, there are some
significant practical differences. First, for finite kp in proportional control, there is always a residual
error that remains and hence the output target will never be exactly reached. Second, if noise is
present in the network, it gets amplified by the same factor kp. Hence, using a high kp in proportional
control makes the controlled network sensitive to noise. Adding an integral control component can
alleviate these issues by replacing the need for a large gain, kp, with the need for a good integrator
circuit (i.e., low α) [34], for which a rich neuroscience literature exists [58, 59, 60, 61, 62]. This
way, we can use a smaller gain, kp, without increasing the residual error and consequently make
the network less sensitive to noise. This is also interesting from a biological point of view since
biological networks are considered to be substantially noisy.

A.8.3 Adding derivative control

Proportional, integral or proportional-integral control can be combined with derivative control. As the
derivative term disappears at the steady state, the steady-state solutions of Lemma 1 remain unaltered
and the learning theory results can be directly applied. However, note that the derivative control term
can significantly impact the stability and feedback learning of the network.

B Proofs and extra information for Section 4: Stability of DFC

B.1 Stability analysis with instantaneous system dynamics

In this section, we first derive eq. (11), which corresponds to the dynamics of the controller obtained
when assuming a separation of timescales between the controller and the network (τu � τv), and
only having integrative control (kp = 0).

Let us recall that vss and v− are the steady-state solutions of the dynamical system (1) with and
without control, respectively. Now, by linearizing the network dynamics (1) around the feedforward
steady-state, v−, we can write

rL = r−L + JQu +O(λ2), (132)

with J ,
[
∂r−L
∂v1

, ...,
∂r−L
∂vL

]∣∣∣
v=v−

the network Jacobian evaluated at the steady state, and where we

dropped the time dependence (t) for conciseness.

Taking into account the results of equations (3) and (132), the control error can then be rewritten as
e = r∗L − rL = (r∗L − r−L )− (rL − r−L ) = δL − JQu +O(λ2). (133)

Consequently, eq. (11) follows:
τuu̇ = e− αu = δL − JQu− αu +O(λ2) = δL − (JQ+ αI)u +O(λ2), (134)

where we changed the notation d
dtu to u̇ for conciseness. Now, we continue by proving Proposition

5, restated below for convenience.
7We leave the proof as an exercise for the interested reader. The proof follows the same approach as Lemma

S2 and uses l’Hôpital’s rule for taking the correct limit of k →∞ .
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Proposition S9 (Proposition 5 in main manuscript). Assuming τu � τv and kp = 0, the network and
controller dynamics are locally asymptotically stable around its equilibrium iff Condition 3 holds.

Proof. Assuming instantaneous system dynamics (τu � τv), then the stability of the system is
entirely up to the controller dynamics. To prove that the system’s equilibrium is locally asymptotically
stable, we need to guarantee that the Jacobian associated to the controller dynamics evaluated at its
steady-state solution, vss, has only eigenvalues with a strictly negative real part [38]. This Jacobian
can be obtained in a similar fashion to that of eq. (11), and is given by

Ju = −(JssQ+ αI), with Jss ,

[
∂r−L
∂v1

, ...,
∂r−L
∂vL

]∣∣∣∣
v=vss

. (135)

To fulfill the local asymptotic stability condition, JssQ+ αI can only have eigenvalues with strictly
positive real parts. As adding αI to JssQ results in adding α to the eigenvalues of JssQ, the local
asymptotic stability condition requires that the real parts of the eigenvalues of JssQ are all greater
than −α, corresponding to Condition 3.

B.2 Stability of the full system

In this section, we derive a concise representation of the full dynamics of the network (1) and
controller dynamics (4) in the general case where the timescale of the neuronal dynamics, τv, is
not negligible and we have proportional control (kp > 0). Proposition S10 provides the abstract
conditions that guarantee local asymptotic stability of the steady states of the full dynamical system.
Proposition S10. The network and controller dynamics are locally asymptotically stable around its
equilibrium iff the following matrix has strictly negative eigenvalues:

API =

[
− 1
τv

(I − Ĵss)
1
τv

(I − Ĵss)Q

Jss

(
(
kp
τv
− 1

τ̃u
)I − kp

τv
Ĵss

)
−kpτv Jss(I − Ĵss)Q− α̃

τ̃u
I

]
(136)

with α̃ = α
1+kpα

, τ̃u = α
1+kpα

, Jss = ∂rL
∂v

∣∣
v=vss

and Ĵss defined in equations (143) and (148).

Proof. Recall that the controller is given by (4)

u = uint + kpe, (137)

where τuu̇int = e− αuint. Then, the controller dynamics can be written as

u̇ =
1

τu

(
e− α(u− kpe)

)
+ kpė

⇔ τuu̇ = (1 + αkp)e + kpτuė− αu
⇔ τ̃uu̇ = e + kpτ̃uė− α̃u,

(138)

with τ̃u = τu/(1 + αkp) and α̃ = α/(1 + αkp).

Recall that the network dynamics are given by (1)

τvv̇i = −vi +Wiφ(vi−1) +Qiu = −∆vi +Qiu, (139)

with ∆vi = vi −Wiφ(vi−1). Which allows us to write

∆v̇i = v̇i −WiD(vi−1)v̇i−1, with D(vi−1) ,
∂φ(vi−1)

∂vi−1

∣∣
vi−1=vi−1(t)

. (140)

We can now obtain the network dynamics in terms of ∆v̇ as

τv∆v̇i = −∆vi +Qiu−WiD(vi−1)(∆vi−1 +Qi−1u)

= −∆vi +WiD(vi−1)∆vi−1 + (Qi −Wi∆vi−1Qi−1)u,
(141)

which for the entire system is

τv∆v̇ = −(I − Ĵ(v))∆v + (I − Ĵ(v))Qu, (142)
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with

Ĵ(v) ,


0 0 0 . . . 0

W2D(v1) 0 0 . . . 0
0 W3D(v2) 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 WLD(vL−1) 0

 (143)

Let us now proceed to linearize the network and controller dynamical systems by defining

∆̃v = ∆v −∆vss and ∆̃u = u− uss, (144)

with uss and ∆vss the steady states of the network and controller (c.f. Lemma 1). With a first order
Taylor approximation, we can write rL ≈ rL,ss + Jss∆̃v, where Jss is as in eq. (135).

The controller dynamics (138) can now be rewritten as

τ̃u∆̃u̇ = r∗L − rL,ss − Jss∆̃v − τ̃ukpJss∆̃v̇ − α̃uss − α̃∆̃u. (145)

When the network and the controller are at equilibrium, eq. (138) yields

0 = ess − α̃uss = r∗L − rL,ss − α̃uss, (146)

and we can rewrite eq. (145) as

τ̃u∆̃u̇ = −Jss∆̃v − τ̃ukpJss∆̃v̇ − α̃∆̃u. (147)

Once again, when the network and the controller are at equilibrium, incorporating the definitions in
(144) into eq. (142), it follows that

τv∆̃v̇ = −(I − Ĵss)(∆vss + ∆̃v) + (I − Ĵss)Q(uss + ∆̃u), Ĵss , Ĵ(vss). (148)

At steady-state, eq. (142) yields

0 = −(I − Ĵss)∆vss + (I − Ĵss)Quss, (149)

which allows us to rewrite eq. (148) as

τv∆̃v̇ = −(I − Ĵss)∆̃v + (I − Ĵss)Q∆̃u. (150)

Using the results from eq. (150), we can write eq. (147) as

τ̃u∆̃u̇ = −Jss∆̃v − τ̃u
τv
kpJss

(
− (I − Ĵss)∆̃v + (I − Ĵss)Q∆̃u

)
− α̃∆̃u. (151)

Finally, as ∆̃v̇ = ∆v̇ = v̇ and ∆̃u̇ = u̇ (144), this allows us to to infer local stability results for the
full system dynamics by looking into the dynamics of ∆̃v̇ and ∆̃u̇ around the steady state:[

∆̃v̇
∆̃u̇

]
=

[
− 1
τv

(I − Ĵss)
1
τv

(I − Ĵss)Q

Jss

(
(
kp
τv
− 1

τ̃u
)I − kp

τv
Ĵss

)
−kpτv Jss(I − Ĵss)Q− α̃

τ̃u
I

] [
∆̃v
∆̃u

]
, API

[
∆̃v
∆̃u

]
(152)

Now, to guarantee local asymptotic stability of the system’s equilibrium, then the eigenvalues of API
must have strictly negative real parts [38].

The current form of the system matrix API provides no straightforward intuition on finding inter-
pretable conditions for the feedback weights Q such that local stability is reached. One can apply
Gershgoring’s circle theorem to infer sufficient restrictions on J and Q to ensure local asymptotic
stability [63]. However, the resulting conditions are too conservative and do not provide intuition in
which types of feedback learning rules are needed to ensure stability.
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B.3 Toy experiments for relation of Condition 3 and full system dynamics

To investigate whether Condition 3 is a good proxy for the local stability of the actual dynamics, we
plotted the maximum real parts of the eigenvalues of JQ+ αI (Condition 3, see Fig. S2.a) and of
API (the actual dynamics, see eq. (136) and Fig. S2.b). We used the same student-teacher regression
setting and configuration as in the toy experiments of Fig. 3.

Fig. S2 shows that the maximum real part of the eigenvalues of API follow the same trend as the
eigenvalues of JQ+ αI . Although they differ in exact value, both eigenvalue trajectories are slowly
decreasing during training and are strictly negative, thereby indicating that Condition 3 is a good
proxy for the local stability of the actual dynamics.

When we only consider leaky integral control (kp = 0, see Fig. S2.c), the dynamics become unstable
during late training, highlighting that adding proportional control is crucial for the stability of the
dynamics. Interestingly, training the feedback weights (blue curve) does not help in this case for
making the system stable, on the contrary, it pushes the network to become unstable more quickly.
These leaky integral control dynamics are equal to the simplified dynamics used in Condition 3 in
the limit of τv/τu → 0, which are stable (see Fig. S2.a). Hence, slower network dynamics (finite
time constant τv) cause the leaky integral control to become unstable, due to a communication delay
between controller and network, causing unstable oscillations. For this toy experiment, we used
τv/τu = 0.2.

Figure S2: Visualization of the maximum real parts of the eigenvalues of the system matrices during
the student teacher regression for DFC with the same configuration as in Fig. 3. (a) The maximum
real part of the eigenvalues of JQ+ αI , hence representing Condition 3. (b) The maximum real part
of the eigenvalues of the system dynamics matrix API (136), representing the actual local stability
of DFC. (c) The maximum real part of the eigenvalues of the system dynamics matrix API (136)
without proportional control (kp = 0), representing the local stability of DFC with only integral
control. The black bar represents the local stability threshold.

C Proofs and extra information for Section 5: Learning the feedback
weights

C.1 Learning the feedback weights in a sleep phase

In this section, we show that the plasticity rule for the apical synapses (13) drives the feedback
weights to fulfill Conditions 2 and 3. We first sketch an intuitive argument on why the feedback
learning rule works. Next, we state the full Theorem and give its proof.

C.1.1 Intuition behind the feedback learning rule

Inspired by the Weight Mirroring Method [14] we use white noise in the network to carry information
from the network Jacobian J into the output rL. To gain intuition, we first consider a normal
feedforward neural network

r−i = φ(v−i ) = φ(Wir
−
i−1), 1 ≤ i ≤ L. (153)

Now, we perturb each layer’s pre-nonlinearity activation with white noise ξi and propagate the
perturbations forward:

ṽ−i = Wiφ(ṽ−i−1) + σξi, 1 ≤ i ≤ L, (154)
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with r̃−0 = r−0 . For small σ, a first-order Taylor approximation of the perturbed output gives

r̃−L = r−L + σJξ +O(σ2), (155)

with ξ the concatenated vector of all ξi. If we now take as output target r∗L = r−L , the output error is
equal to

e = r∗L − r̃−L = −σJξ +O(σ2). (156)

We now define a simple learning rule ∆Q = −σξeT − βQ, which is a simple anti-Hebbian rule with
as presynaptic signal the output error e and as postsynaptic signal the noise inside the neuron σξ,
combined with weight decay. If ξ is uncorrelated white noise with correlation matrix equal to the
identity matrix, the expectation of this learning rule is

E[∆Q] = σ2JT − βQ. (157)

We see that this learning rule lets the feedback weights Q align with the transpose of the networks
Jacobian J and has a weight decay term to prevent Q from diverging.

There are three important differences between this simplified intuitive argumentation for the feedback
learning rule and the actual feedback learning rule (13) used by DFC, which we will address in the
next section.

1. DFC considers continuous dynamics, hence, the incorporation of noise leads to stochastic
differential equations (SDEs) instead of a discrete perturbation of the network layers. The
handling of SDEs needs special care, leading to the use of exponentially filtered white noise
instead of purely white noise (see next section).

2. The postsynaptic part of the feedback learning rule (13) for DFC is the control signal u
instead of the output error e. The control signal integrates the output error over time, causing
correlations over time to arise in the feedback learning rule.

3. The presynaptic part of the feedback learning rule (13) for DFC is the feedback compartment
vfb which consists of both the controller input Qu and the noise instead of only the noise.
This will lead to an extra term in the expectation E[∆Q], which results in Q aligning with
JT (JJT + γI)−1, γ > 0 instead of JT .

C.1.2 Theorem and proof

Noise dynamics. For simplicity of the argument and proof, we assume that the noise only enters
through the feedback compartment of the neuron. The proposed theorem below and its proof
also holds when extra noise is added in the feedforward and central compartment, as long as it is
independent from the noise in the feedback compartment. Throughout the main manuscript, we
assumed instantaneous dynamics of the feedback compartment, i.e., vfb

i (t) = Qiu(t). If we now add
white noise to the feedback compartment, the limit to instantaneous dynamics is not well defined
anymore (limτvfb→0 in eq. (158)). Hence, we introduce the following dynamics for the feedback
compartment

τvfb
d
dt
vfb
i (t) = −vfb

i (t) +Qiu(t) + σξi(t). (158)

The network dynamics (1) are now given by

τv
dvi(t)

dt
= −vi(t) +Wiφ(vi−1(t)) + vfb

i (t). (159)

When we remove the noise ξi and take limτvfb→0, we recover the original network dynamics (1) of
the main manuscript. If we assume that u is independent from vfb

i , eq. (158) is a linear time-invariant
stochastic differential equation that can be solved with the Variation of Constants method, without a
special treatment for the white noise [43], leading to the following solution for vfb

i :

vfb
i (t) =

1

τvfb

∫ t

−∞
exp

(
− 1

τvfb
(t− τ)

)
Qiu(τ)dτ +

σ

τvfb

∫ t

−∞
exp

(
− 1

τvfb
(t− τ)

)
ξi(τ)dτ.

(160)
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If we now assume that τvfb � τu, and hence the dynamics of the feedback compartment is much
faster than u, vfb can be approximated by

vfb
i (t) ≈ Qiu(t) +

σ

τvfb

∫ t

−∞
exp

(
− 1

τvfb
(t− τ)

)
ξi(τ)dτ (161)

, Qiu(t) + σεi(t), (162)
with εi(t) exponentially filtered white noise, i.e., an Ornstein-Uhlenbeck process [43] with zero mean
and covariance equal to 8

E
[
εi(t)εi(t+ ∆t)T

]
=

1

2τvfb
exp

(
− 1

τvfb
|∆t|

)
. (163)

In the remainder of the section, we assume this approximation to be exact. The network dynamics
(159) can then be written as

τv
dvi(t)

dt
= −vi(t) +Wiφ(vi−1(t)) +Qiu(t) + σεi(t). (164)

Now, we are ready to state and prove the main theorem of this section, which shows that the feedback
weight plasticity rule (13) pushes the feedback weights to align with a damped pseudoinverse of the
forward Jacobian J of the network.
Theorem S11. Assuming stable dynamics, a separation of timescales τvfb , τv � τu � τQ, kp = 0,
α � |λmax(JQM )| and J is of full rank, and given r∗L = r−L and uncorrelated white noise ξi ∼
N (0, I) entering the feedback compartment, the dynamics of the first moment QM of the apical
weight plasticity (13) has the following approximate solution in the limit of σ → 0:

lim
σ→0

d
dt
QM ≈ −

1

τuα
QMJJ

T +
1

2τu
JT − βQM , (165)

and the first moment converges to:

Qss
M ≈

α

2
JT (JJT + γI)−1, (166)

with γ = αβτu. Furthermore, Qss
M satisfies Conditions 2 and 3, even if α = 0 in the latter.

Proof. Linearizing the system dynamics (which becomes exact in the limit of σ → 0 and assuming
stable dynamics), results in the following dynamical equation for the controller, recalling that r∗L = r−L
(c.f. App. A.1):

τu
d
dt
u(t) = −J∆v(t)− αu(t), (167)

with ∆vi , vi −Wiφ(vi−1) and ∆v the concatenation of all ∆vi. When we have a separation of
timescales between the network and controller, i.e., τv � τu, which corresponds with instant system
dynamics of the network (164), we get

∆vi = Qiu + σεi (168)
∆v = Qu + σε (169)

where the latter is the concatenated version of the former. Combining this with eq. (167) gives the
following stochastic differential equation for the controller dynamics:

τu
d
dt
u(t) = −(JQ+ αI)u(t)− σJε(t). (170)

When we have a separation of timescales between the synaptic plasticity and controller dynamics,
i.e., τu � τQ, we can treat Q as constant and therefore eq. (170) represents a linear time-invariant
stochastic differential equation, which has as solution [43]

u(t) = − σ

τu

∫ t

−∞
e−

1
τu
A(t−τ)Jε(τ)dτ (171)

A , JQ+ αI. (172)

8Note that in limτ
vfb
→0, εi(t) has infinite variance, and is hence not well defined, explaining why we need

to make this detour of assuming non-instantaneous dynamics for the feedback compartment.
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Using the approximate solution of the feedback compartment (161) (which we consider exact due to
the separation of timescales τvfb � τu), we can write the expectation of the first part of the feedback
learning rule (13) as

E
[
− vfb(t)u(t)T

]
= E

[
−
(
Qu(t) + σε(t)

)
u(t)T

]
(173)

= E

[
−σ

2

τ2
u

Q

∫ t

−∞
exp

(
− 1

τu
A(t− τ)

)
Jε(τ)dτ

∫ t

−∞
ε(τ)TJT exp

(
− 1

τu
AT (t− τ)

)
dτ︸ ︷︷ ︸

(a)

(174)

...+
σ2

τu
ε(t)

∫ t

−∞
ε(τ)TJT exp

(
− 1

τu
AT (t− τ)

)
dτ︸ ︷︷ ︸

(b)

]
. (175)

Focusing on (a) and using the covariance of ε (163), we get:

E[(a)] = −σ
2

τ2
u

Q

∫ t

−∞
e

1
τu
A(t−τ1)J

∫ t

−∞

1

2τvfb
e
− 1
τ
vfb
|τ1−τ2|

JT e−
1
τu
AT (t−τ2)dτ2dτ1 (176)

= −σ
2

τ2
u

Q

∫ t

−∞
e−

1
τu
A(t−τ1)J

(∫ τ1

−∞

1

2τvfb
JT e

−
(

1
τ
vfb

I+ 1
τu
AT
)

(τ1−τ2)
e−

1
τu
AT (t−τ1)dτ2

(177)

...+

∫ t

τ1

1

2τvfb
JT e

−
(

1
τ
vfb

I− 1
τu
AT
)

(τ2−τ1)
e−

1
τu
AT (t−τ1)dτ2

)
dτ1 (178)

≈ −σ
2

τ2
u

Q

∫ t

−∞
e−

1
τu
A(t−τ1)JJT e−

1
τu
AT (t−τ1)dτ1, (179)

where we used in the last step that τvfb � τu, hence 1
τ
vfb
I − 1

τu
AT ≈ 1

τ
vfb
I and

1
τ
vfb

∫ 0

−t1 e
− 1
τ
vfb

τ
dτ ≈ 1 when τvfb � t1 for t1 > 0. If we further assume that α �

max
(
{|λi(JQ)|}

)
with λi(JQ) the eigenvalues of JQ, we have that

eA = eJQ+αI ≈ eα, (180)

and hence

E[(a)] ≈ −σ
2

τ2
u

Q

∫ t

−∞
e−

2
τu
α(t−τ1)JJT dτ1 (181)

= − σ2

τuα
QJJT . (182)

Focusing on part (b), we get

E[(b)] =
σ2

τu

∫ t

−∞

1

2τvfb
e
− 1
τ
vfb

(t−τ)
JT exp

(
− 1

τu
AT (t− τ)

)
dτ (183)

=
σ2

τu
JT
∫ t

−∞

1

2τvfb
e
−
(

1
τ
vfb

I+ 1
τu
AT
)

(t−τ)
dτ (184)

≈ σ2

2τu
JT . (185)

Taking everything together, we get the following approximate dynamics for the first moment of Q:

lim
σ→0

d
dt

E
[
Q
]

= lim
σ→0

d
dt
QM = lim

σ→0
E
[
− 1

σ2
vfbuT − βQ

]
(186)

≈ − 1

τuα
QMJJ

T +
1

2τu
JT − βQM . (187)
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Assuming the approximation exact and solving for the steady state, we get:

0 = − 1

τuα
Qss
MJJ

T +
1

2τu
JT − βQss

M (188)

⇒ Qss
M =

α

2
JT (JJT + αβτuI)−1. (189)

The only thing remaining to show is that the dynamics of QM are convergent. By vectorizing eq.
(187), we get

τQ
d
dt

vec
(
QM ) = − 1

τuα

(
JJT ⊗ I + αβτuI

)
vec
(
QM

)
+

1

2τu
vec
(
JT
)
. (190)

As the eigenvalues of a Kronecker product A⊗B are equal to the products λAi λ
B
j , the eigenvalues of

JJT ⊗ I are equal to the eigenvalues of JJT (in higher multiplicity) and hence all positive. This
makes the above dynamical system convergent, thereby concluding the main part of the proof. Finally,
Lemma S12 shows that, if J is full rank, Qss

M = α
2 J

T (JJT + αβτuI)−1 satisfies Conditions 2 and
3, even if α = 0 in the latter.

Lemma S12. Q = JT (JJT + γI)−1 with γ ≥ 0 satisfies Condition 2 and the product JJT (JJT +
γI)−1 with γ ≥ 0 has strictly positive eigenvalues if J is of full rank.

Proof. When J is of full rank, JT (JJT + γI)−1 can be written as JTM , with M a square full
rank matrix. As M is full rank, JTM has the same column space as JT , thereby proving that
Q = JT (JJT + γI)−1 with γ ≥ 0 satisfies Condition 2.

Next, consider the singular value decomposition of J :

J = UΣV T . (191)

Now, JJT (JJT + γI)−1 can be written as

JJT (JJT + γI)−1 = UΣΣT (ΣΣT + γI)−1UT , (192)

with ΣΣT (ΣΣT +γI)−1 a diagonal matrix with σ2
i

σ2
i+γ

> 0 on its diagonal, and σi the singular values

of J . As UT = U−1, and ΣΣT (ΣΣT +γI)−1 is diagonal, eq. (192) is the eigenvalue decomposition
of JJT (JJT + γI)−1, with eigenvalues σ2

i

σ2
i+γ

> 0, thereby concluding the proof.

C.2 Toy experiments corroborating the theory

To test whether Theorem S11 can also provide insight into more realistic settings, we conducted
a series of student-teacher toy regression experiments with a one-hidden-layer network of size
20 − 10 − 5 for more realistic values of τvfb , τv, α and kp > 0. For details about the simulation
implementation, see App. E. We investigate the learning of Q during pre-training, hence, when the
forward weights Wi are fixed. In contrast to Theorem S11, we use multiple batch samples for training
the feedback weights. When the network is linear, J remains the same for each batch sample, hence
mimicking the situation of Theorem S11 where Q is trained on only one sample to convergence.
When the network is nonlinear, however, J will be different for each sample, causing Q to align with
an average configuration over the batch samples.

We start by investigating which damping value γ accurately describes the alignment of Q with
JT (JJT + γI)−1 in this more realistic case. Fig. S3.a shows the alignment of Q with JT (JJT +
γI)−1 for different damping values γ in a linear network. Interestingly, the damping value that
optimally describes the alignment of Q is γ = 5, which is much larger than would be predicted
by Theorem S11 which uses simplified conditions. Hence, the more realistic settings used in the
simulation of these toy experiments result in a larger damping value γ. For nonlinear networks,
similar conclusions can be drawn (see Fig. S3.b), however, with slightly worse alignment due to J
changing for each batch sample. Note that almost perfect compliance to Condition 2 is reached for
both the linear and nonlinear case (not shown here).
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(a) Linear (b) Nonlinear

Figure S3: Alignment of the feedback weights Q with the damped pseudoinverse JT (JJT + γI)−1

for various values of γ. We used a one-hidden-layer network of size 20-10-5 with a linear output
layer and (a) a linear hidden layer or (b) a tanh hidden layer. Hyperparameters: kp = 0, α = 0.5,
τu = 1., τvfb = 0.3, τv = 0.005, β = 0.01 and σ = 0.01. We used 300 Euler-Maruyama simulation
steps of size ∆t = 0.001. A window-average is plotted together with the window-std (shade).

Next, we investigate how big α needs to be for good alignment. Surprisingly, Fig. S4 shows that Q
reaches almost perfect alignment for all values of α ∈ [0, 1], both for linear and nonlinear networks.
We hypothesize that this is due to the short simulation window (300 steps of ∆t = 0.001) that we
used to reduce computational costs, preventing the dynamics from diverging, even when they are
unstable. Interestingly, this hypothesis leads to another case where the feedback learning rule (13)
can be used besides for big α: when the network activations can be ‘reset’ when they start diverging,
e.g., by inhibition from other brain areas, the feedback weights can be learned properly, even with
unstable dynamics.

(a) Linear (b) Nonlinear

Figure S4: Alignment of the feedback weights Q with the damped pseudoinverse JT (JJT + γI)−1

for various values of α. We used a one-hidden-layer network of size 20-10-5 with a linear output
layer and (a) a linear hidden layer or (b) a tanh hidden layer. Hyperparameters: kp = 0.3, γ = 5,
τu = 1., τvfb = 0.3, τv = 0.005, β = 0.01 and σ = 0.01. We used 300 Euler-Maruyama simulation
steps of size ∆t = 0.001. A window-average is plotted together with the window-std (shade).

Finally, we investigate how kp influences the feedback learning. Fig. S5 shows that bigger kp increase
the speed of alignment with JT (JJT + γI)−1.

C.3 Learning the forward and feedback weights simultaneously

In this section, we show that the forward and feedback weights can be learned simultaneously, when
noise is added to the feedback compartment, resulting in the noisy dynamics of eq. (164), and when
the feedback plasticity rule (13) uses a high-pass filtered version of u as presynaptic plasticity signal.

We make the same assumptions as in Theorem S11, except now the output target r∗L is the one for
learning the forward weights, hence given by eq. (3). Linearizing the network dynamics, gives us the
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(a) Linear (b) Nonlinear

Figure S5: Alignment of the feedback weights Q with the damped pseudoinverse JT (JJT + γI)−1

for various values of kp. We used a one-hidden-layer network of size 20-10-5 with a linear output
layer and (a) a linear hidden layer or (b) a tanh hidden layer. Hyperparameters: α = 0.1, γ = 5,
τu = 1., τvfb = 0.3, τv = 0.005, β = 0.01 and σ = 0.01. We used 300 Euler-Maruyama simulation
steps of size ∆t = 0.001. A window-average is plotted together with the window-std (shade).

following expression for the control error

e(t) = δL − J∆v(t), (193)

and for the controller dynamics (with kp = 0)

τu
d
dt
u(t) = δL − J∆v(t)− αu(t). (194)

Using instantaneous network dynamics (τv � τu), we have that ∆v(t) = Qu(t) + σε(t), giving us:

τu
d
dt
u(t) = δL − (JQ+ αI)u(t)− σJε(t). (195)

We now continue by investigating the dynamics of newly defined signal ∆u(t) that subtracts a
baseline from the control signal u(t):

∆u(t) , u(t)− uss, uss = (JQ+ αI)−1δL, (196)

with uss being the steady state of u in the dynamics without noise (see Lemma 1). Rewriting the
dynamics (195) for ∆u gives us

τu
d
dt

∆u(t) = −(JQ+ αI)∆u(t)− σJε(t). (197)

We now recovered exactly the same dynamics for ∆u as was the case for u (170) during the sleep
phase where r∗L = r−L in Theorem S11. Now, we introduce a new plasticity rule for Q using ∆u
instead of u as presynaptic plasticity signal:

τQ
d
dt
Q(t) = −vfb(t)∆u(t)T − βQ(t). (198)

Upon noting that ∆u (representing the noise fluctuations in u) is independent of uss (representing the
control input needed to drive the network to r∗L), the approximate first moment dynamics described in
Theorem S11 also hold for the new plasticity rule (198). Furthermore, when the controller dynamics
(195) have settled, uss is the average of u(t) (which has zero-mean noise fluctuations on top of uss),
hence, ∆u can be seen as a high-pass filtered version of u(t).

To conclude, we have shown that the sleep phase for training the feedback weights Q can be merged
with the phase for training the forward weights with r∗L as defined in eq. (3), if the plasticity rule
for Q (198) uses a high-pass filtered version ∆u of u as presynaptic plasticity signal and when the
network and controller are fluctuating around their equilibrium, as we did not take initial conditions
into account. We hypothesize that even with initial dynamics that have not yet converged to the
steady-state, the plasticity rule for Q (198) with ∆u a high-pass filtered version of u will result in
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proper feedback learning, as high-pass filtering u(t) will extract high-frequency noise fluctuations9

out of it which are correlated with vfb and can hence be used for learning Q. We leave it to future
work to experimentally verify this hypothesis. Merging the two phases into one has as a consequence
that there is also noise present during the learning of the forward weights (5), which we investigate in
the next subsection.

C.4 Influence of noisy dynamics on learning the forward weights

When there is noise present in the dynamics during learning the forward weights, this will have an
influence on the updates of Wi. It turns out that the same noise correlations that we used in the
previous sections to learn the feedback weights will cause bias terms to appear in the updates of
the forward weights Wi (5). This issue is not unique to our DFC setting with a feedback controller
but appears in general in methods that use error feedback and have realistic noise dynamics in their
hidden layers. In this section, we lay down the issues caused by noise dynamics for learning forward
weights for general methods that use error feedback. At the end of the section, we comment on the
implications of these issues for DFC.

For simplicity, we consider a normal feedforward neural network

r−i = φ(v−i ) = φ(Wir
−
i−1), 1 ≤ i ≤ L. (199)

To incorporate the notion of noisy dynamics, we perturb each layer’s pre-nonlinearity activation with
zero-mean noise εi and propagate the perturbations forward:

ṽ−i = Wiφ(ṽ−i−1) + σεi, 1 ≤ i ≤ L, (200)

with r̃−0 = r−0 . For small σ, a first-order Taylor approximation of the perturbed output gives

r̃−L = r−L + σJε +O(σ2), (201)

with ε the concatenated vector of all εi. If the task loss is an L2 loss and we have the training label
r∗L, the output error is equal to

eL = r∗L − r̃−L = δL − σJε +O(σ2), (202)

with δL = r∗L − r−L , the output error without noise perturbations. To remain general, we define the
feedback path ei = gi(eL) that transports the output error eL to the hidden layer i, at the level of
the pre-nonlinearity activations. E.g., for BP, ei = gi(eL) = JTi eL, and for direct linear feedback
mappings such as DFA, ei = gi(eL) = QieL. Now, the commonly used update rule of postsynaptic
error signal multiplied with presynaptic input gives (after a first-order Taylor expansion of all terms)

∆Wi = ηeir̃
−T
i−1 (203)

= η
(
δi − σJgiJε +O(σ2)

)(
r−i−1 + σDi−1εi−1 +O(σ2)

)T
, (204)

with δi = gi(δL), Jgi = ∂gi(eL)
∂eL

∣∣
eL=δL

and Di =
∂r−i
∂vi

∣∣
vi=v−

i

. Taking the expectation of ∆Wi, we
get

E[∆Wi] = ηδir
−T
i−1 − ησ

2JgiJi−1Σi−1Di−1 +O(σ3), (205)

with Σi−1 the covariance matrix of εi−1. We see that besides the desired update ηδir−Ti−1, there also
appears a bias term due to the noise, which scales with σ2 and cannot be avoided by averaging over
weight updates. The noise bias arises from the correlation between the noise in the presynaptic input
r̃i−1 and the postsynaptic error ei. Note that it is not a valid strategy to assume that the noise in ei is
uncorrelated from the noise in r̃i−1 due to a time delay between the two signals, as in more realistic
cases, ε originates from stochastic dynamics that integrate noise over time (e.g., one can think of ε as
an Ornstein-Uhlenbeck process [43]) and is hence always correlated over time.

In DFC, similar noise biases arise in the average updates of Wi. To reduce the relative impact of the
noise bias on the weight update, the ratio ‖δi‖2/σ2 must be big enough, hence strong error feedback

9Not all noise fluctuations are high-frequency. However, the important part of the hypothesis is that the
high-pass filtering selects noise components that are zero-mean and correlate with vfb.
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is needed. In DFC, ‖δL‖2, and hence also the postsynaptic error term in the weight updates for Wi,
scales with the target stepsize λ. Interestingly, this causes a trade-off to appear in DFC: on the one
hand, λ needs to be small such that the weight updates (5) approximate GN and MN optimization
(the theorems used Taylor approximations which become exact for λ→ 0), and on the other hand, λ
needs to be big to prevent the forward weight updates from being buried in the noise bias.

A possible solution for removing the noise bias from the average forward weight updates is to either
buffer the postsynaptic error term or the presynaptic input ri−1, or both (e.g., accumulating them or
low-pass filtering them), before they are multiplied with each other to produce the weight update.
This procedure would average the noise out in the signals, before they have the chance to correlate
with each other in the weight update. Whether this procedure could correspond with biophysical
mechanisms in a neuron is an interesting question for future work.

D Related work

Our learning theory analysis that connects DFC to Gauss-Newton (GN) optimization was inspired
by three independent recent studies that, on the one hand, connect Target Propagation (TP) to GN
optimization [21, 22] and, on the other hand, point to a possible connection between Dynamic
Inversion (DI) and GN optimization [32]. There are however important distinctions between how
DFC approximates GN and how TP and DI approximate GN. In the following subsections, we discuss
these related lines of work in detail.

D.1 Comparison of DFC to TP and variants

Recent work [21, 22] discovered that learning through inverses of the forward pathway can in certain
cases lead to an approximation of GN optimization. Although this finding inspired our theoretical
results on the CA capabilities of DFC, there are fundamental differences between DFC and TP. The
main conceptual difference between DFC and the variants of TP [19, 20, 21, 22] is that DFC uses
the combination of network dynamics and a controller to dynamically invert the forward pathway
for CA, whereas TP and its variants learn parametric inverses of the forward pathway, encoded in
the feedback weights. Although dynamic and parametric inversion seem closely related, they lead to
major methodological and theoretical differences.

Methodological differences between DFC and TP. First, for TP and its variants, the task of
approximating the inverse of the forward pathway is completely put onto the feedback weights,
resulting in the need for a strict relation between the feedforward and feedback pathway at all times
during training. DFC, in contrast, reuses the forward pathway to dynamically compute its inverse,
resulting in a more flexible relation between the feedforward and feedback pathway, described by
Condition 2. To the best of our knowledge, DFC is the first method that approximates a principled
optimization method for feedforward neural networks of arbitrary dimensions, compatible with a
wide range of feedback connectivity. The recent work of Bengio [22] iteratively improves the inverse
and, hence, can compensate for imperfect parametric inverses. However, this method is developed
only for invertible networks, which require all layers to have equal dimensions.

Second, DFC drives the hidden neural activations to target values simultaneously, hence letting
‘target activations’ from upstream layers influence ‘target activations’ from downstream layers. TP, in
contrast, computes each target as a (pseudo)inverse of the output target independently. This is a subtle
yet important difference between DFC and TP, which leads to significant theoretical differences, on
which we will expand later. To gain intuition, consider the case where we update the weights of both
DFC and TP to reach exactly the local layer targets. In TP, if we update the weights of a hidden layer
to reach its target, all downstream layers will also reach their target without updating the weights.
Hence, if we update all weights simultaneously, the output will overshoot its target. DFC, in contrast,
takes the effect of the updated target values of upstream layers already into account, hence, when
all weight updates are done simultaneously, the output target is reached exactly (in the linearized
dynamics, c.f. Theorem 3).

Third, DFC needs significantly less external coordination compared to the recent TP variants. The
new variants of TP with a link to GN [21] need highly coordinated noise phases for computing the
Difference Reconstruction Loss (one separated noise phase for each layer). For DTP [20], similar
coordination is needed if noisy activations are used for computing the reconstruction loss, as proposed
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by the authors. The iterative variant of TP [22] needs coordination in propagating the target values,
as the target iterations for a layer can only start when the iterations of the downstream layer have
converged. As DFC uses dynamic inversion instead of parametric inversion, possible learning rules
for the feedback weights do not need to use the Difference Reconstruction Loss [21] or variants
thereof, opening the route to alternative, more biologically realistic learning rules. We propose a first
feedback learning rule compatible with DFC, that makes use of noise and Hebbian learning, without
the need for extensive external coordination (see also App. C.3 that merges feedforward and feedback
weight training in a single-phase).

Finally, DFC uses a multi-compartment neuron model closely corresponding to recent models of
cortical pyramidal neurons, to obtain plasticity rules fully local in space and time. Presently, it is
unclear whether there exist similar neuron and network models for TP that result in plasticity rules
local in time.

Theoretical differences between DFC and TP. First, computing layerwise inverses, as is done in
TP [19], DTP [20], and iterative TP [22], can only be linked to GN for invertible networks but breaks
down for non-invertible networks, as shown by Meulemans et al. [21]. Both DFC and the DRL
variants of TP [21] establish a link to GN for both invertible and non-invertible feedforward networks
of arbitrary dimensions. However, the DRL variants of TP are linked to a hybrid version of GN and
gradient descent, whereas DFC, under appropriate conditions, is linked to pure GN optimization on
the parameters. Our Theorems 2 and 3 differ from the theoretical results on the DRL variants of TP
[21] due to the fact that: (i) the DRL variants compute targets for the post-nonlinearity activations and
the DFC target activations, vi, are pre-nonlinearity activations; and (ii) the DRL variants compute the
targets for each layer independently, whereas DFC dynamically computes the targets while taking
into account the changed target activations of other layers. We continue with expanding on this
second point.

As explained intuitively before, TP and its variants compute each layer target independently from
the other layer targets. Consequently, to link their variants of TP to GN optimization, Meulemans et
al. [21] and Bengio [22] need to make a block-diagonal approximation of the GN curvature matrix,
with each block corresponding to a single layer. As off-diagonal blocks are put to zero, influences of
upstream target values on the downstream targets are ignored. The block-diagonal approximation
of the GN curvature matrix was proposed in studies that used GN optimization to train deep neural
networks with big minibatch sizes [64, 65]. However, similar to DFC, TP is connected to GN with
a minibatch size of 1. In this case, the GN curvature matrix is of low rank, and a block-diagonal
approximation of this matrix will change its rank and hence its properties. In the analysis of DFC,
in contrast, we do not need to make this block-diagonal approximation, as the target activations, vi,
influence each other. Consequently, DFC has a closer connection to GN optimization than the TP
variants [21, 22].

Finally, DFC does not use a reconstruction loss to train the feedback weights but instead uses noise
and Hebbian learning.

Empirical comparison of DFC to TP and variants Table S1 shows the results for DTP [20],
and DDTP-linear [21] (the best performing variant of TP in [21]) on MNIST, Fashion MNIST,
MNIST-autoencoder, and MNIST (train), for the same architectures as used for Table 1.

Table S1: The test error (MNIST, Fashion MNIST), test loss (MNIST-autoencoder), and training loss
MNIST (train) for DTP and DDTP-linear. Same network architectures and settings as for Table 1.

MNIST Fashion-MNIST MNIST-autoencoder MNIST (train)

DTP 2.61±0.13% 11.26±0.23% 22.36±0.59 · 10−2 8.36±4.09 · 10−6

DDTP-linear 2.22±0.22% 10.84±0.22% 14.60±0.10 · 10−2 1.97±0.70 · 10−8

Comparing these results to the ones in Table 1, we see that DFC outperforms DTP on all datasets and
DDTP-linear on MNIST-autoencoder, while having similar performance on the other datasets. These
encouraging results suggest that the closer connection of DFC to GN, when compared to the one of
DDTP-linear to GN (see section D.1), leads to practical improvements in performance in some more
challenging datasets.
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D.2 Comparison of DFC to Dynamic Inversion

Recent work introduced DI [32], which, similar to DFC, dynamically inverts the forward pathway
through the use of a controller. However, some fundamental differences between DI and DFC lead
to various new desirable properties of DFC. First, DFC introduces a principled way to control all
layers simultaneously, hence requiring less external control. Second, in contrast to DI, the learning
rules in DFC are fully local in time. Third, DFC can train the feedback weights to continuously
adapt themselves to the changing forward pathway, leading to more accurate CA. Finally, Podlaski
and Machens [32] only explored the link between DI and GN for linear one-hidden layer networks
and it requires a block-diagonal approximation of the curvature matrix, similar to TP. Upon closer
inspection, the link between DI and GN cannot be generalized to networks with multiple hidden
layers of various sizes or nonlinear activation functions, in contrast to DFC. This is because the
layerwise dynamical inversion in DI does not result in the pseudoinverses of Ji = ∂rL

∂ri
since: (i) the

pseudoinverse cannot be factorized over the layers [21]; and (ii) in nonlinear networks, the Jacobians
are evaluated at a wrong value because DI transmits errors instead of controlled layer activations
through the forward path of the network during the dynamical inversion phase.

D.3 The core contributions of DFC

In summary, we see that DFC merges various insights from different fields resulting in a novel
biologically plausible CA technique with unique and interesting properties that transcend the sheer
sum of its parts. To clarify the novelty of our work, we summarize here again the core contributions
of DFC:

• DFC extends the idea of using a feedback controller to adjust network activations to also
provide CA to DNNs by using it to track the desired output target, opening a new route for
designing principled CA methods for DNNs.

• To the best of our knowledge, DFC is the first method that approximates a principled opti-
mization method for feedforward neural networks of arbitrary dimensions, while allowing
for a wide and flexible range of feedback connectivity, in contrast to a single allowed
feedback configuration.

• The learning rules of DFC for the forward and feedback weights are fully local both in time
and space, in contrast to many other biologically plausible learning rules. Furthermore,
DFC does not need highly specific connectivity motives nor tightly coordinated plasticity
mechanisms and can have all weights plastic simultaneously, if the adaptations explained in
appendix C.3 are used.

• The multi-compartment neuron model needed for DFC naturally corresponds to recent
multi-compartment models of pyramidal neurons.

E Simulations and algorithms of DFC

In this section, we provide details on the simulation and algorithms used for DFC, DFC-SS, DFC-SSA
and for training the feedback weights.

E.1 Simulating DFC and DFC-SS for training the forward weights

For simulating the network dynamics (1) and controller dynamics (4) without noise, we used the
forward Euler method with some slight modifications. First, we implemented the controller dynamics
(4) as follows:

u(t) = uint(t) + kpe(t), τu
d
dt
uint(t) = e(t)− α̃u(t). (206)

Note that we changed the leakage term from αuint to α̃u, such that we have direct control over the
hyperparameter α̃ (the damping factor in Lemma 1) that is now independent of kp. Note that both
(4) and (206) result in exactly the same dynamics for u(t), if α̃ = α

1+kpα
and τu scaled by α

1+kpα
.

Hence, this is just an implementation strategy to gain direct control over α̃ as a hyperparameter
independent from kp.
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Algorithm 1 provides the pseudo-code of our simulation of the network and controller dynamics during
the training of the forward weights Wi and biases bi. We use the forward Euler method [43] with
stepsize ∆t and make two nuanced modifications. First, to better reflect the layered structure of the
network, we use vff

i [k+ 1] = Wiφ(vi−1[k+ 1]) +bi instead of vff
i [k+ 1] = Wiφ(vi−1[k]) +bi.10

For small stepsizes ∆t, this modification has almost no effect. However, for larger stepsizes,
the modification better reflects the underlying continuous dynamics with its layerwise structure.
Second, using insights from discrete control theory, we use vfb

i [k + 1] = Qiu[k + 1] instead of
vfb
i [k + 1] = Qiu[k], such that the control error e[k] of the previous timestep is used to provide

feedback, instead of the control error e[k − 1] of two timesteps ago.11 Again, this modification has
almost no effect for small stepsizes ∆t, but better reflects the underlying continuous dynamics for
bigger stepsizes. In our simulations, the stepsize ∆t that worked best for the experiments was small,
hence, the discussed modifications had only minor effects on the simulation.

Algorithm 1: Simulation of DFC for training the forward parameters.
Initialize layer activations and parameter update buffers:
for i in range(1,L) do

vi[1] = v−i
ri[1] = r−i
uint[1] = 0
∆Wi = 0
∆bi = 0

for k in range(1,Kmax) do
Update controller:
e[k] = r∗L − rL[k]
uint[k + 1] = uint[k] + ∆t

τu
(e[k]− α̃u[k])

u[k + 1] = uint[k + 1] + kpe[k]
Update network:
for i in range(1,L) do

vff
i [k + 1] = Wiφ(vi−1[k + 1]) + bi

vfb
i [k + 1] = Qiu[k + 1]

vi[k + 1] = vi[k] + ∆t
τv

(−vi[k] + vff
i [k + 1] + vfb

i [k + 1])

ri[k + 1] = φ(vi[k + 1])
Buffer forward parameter updates:
∆Wi = ∆Wi +

(
φ(vi[k + 1])− φ(vff

i [k + 1])
)
ri−1[k + 1]T

∆bi = ∆bi + φ(vi[k + 1])− φ(vff
i [k + 1])

Update forward parameters with ∆Wi/Kmax and ∆bi/Kmax and an optimizer of choice

For DFC-SS, the same simulation strategy is used, with as only difference that the weight updates
∆Wi only use the network activations of the last simulation step (see Algorithm 2). Finally, for
DFC-SSA, we directly compute the steady-state solutions according to Lemma 1 (see Algorithm 3).

E.2 Simulating DFC with noisy dynamics for training the feedback weights

For simulating the noisy dynamics during the training of the feedback weights, we use the Euler-
Maruyama method [43], which is the stochastic version of the forward Euler method. As discussed
in App. C, we let white noise ξ enter the dynamics of the feedback compartment and we now take a
finite time constant τvfb for the feedback compartment, as the instantaneous form with τvfb → 0 (that
we used for simulating the network dynamics without noise) is not well defined when noise enters
the dynamics:

τvfb
d
dt
vfb
i (t) = −vfb

i (t) +Qiu(t) + σξi. (207)

10In the code repository, this modification to Euler’s method is indicated with the command line argument
inst_transmission

11In the code repository, this modification to Euler’s method is indicated with the command line argument
proactive_controller
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Algorithm 2: Simulation of DFC-SS for training the forward parameters.
Initialize layer activations and parameter update buffers:
for i in range(1,L) do

vi[1] = v−i
ri[1] = r−i
uint[1] = 0

for k in range(1,Kmax) do
Update controller:
e[k] = r∗L − rL[k]
uint[k + 1] = uint[k] + ∆t

τu
(e[k]− α̃u[k])

u[k + 1] = uint[k + 1] + kpe[k]
Update network:
for i in range(1,L) do

vff
i [k + 1] = Wiφ(vi−1[k + 1]) + bi

vfb
i [k + 1] = Qiu[k + 1]

vi[k + 1] = vi[k] + ∆t
τv

(−vi[k] + vff
i [k + 1] + vfb

i [k + 1])

ri[k + 1] = φ(vi[k + 1])

Compute forward parameter updates using the last simulation step:
∆Wi =

(
φ(vi[Kmax])− φ(vff

i [Kmax])
)
ri−1[Kmax]T

∆bi = φ(vi[Kmax])− φ(vff
i [Kmax])

Update forward parameters with ∆Wi and ∆bi and an optimizer of choice

Algorithm 3: DFC-SSA iteration for training the forward parameters.
Compute the network Jacobian J
δL = r∗L − r−L
Compute steady-state solution using Lemma 1:
uss =

(
JQ+ α̃I

)−1
δL

∆vss = Quss

Split ∆vss over the layers into ∆vi,ss
Compute steady-state network activations:
r0,ss = r−0
for i in range(1,L) do

vi,ss = Wiri−1,ss + bi + ∆vi,ss
ri,ss = φ(vi,ss)

Compute forward parameter updates using the analytical steady-state solutions:
∆Wi =

(
φ(vi,ss)− φ(vff

i,ss)
)
rTi−1,ss

∆bi = φ(vi,ss)− φ(vff
i,ss)

Update forward parameters with ∆Wi and ∆bi and an optimizer of choice

The dynamics for the network then becomes

τv
d
dt
vi(t) = −vi(t) +Wiri−1(t) + vfb

i (t), (208)

and, as before, eq. (206) is taken for the controller dynamics. Using the Euler-Maruyama method
[43], the feedback compartment dynamics (207) can be simulated as

vfb
i [k + 1] = vfb

i [k] +
∆t

τvfb

(
− vfb

i [k] +Qiu[k + 1]
)

+

√
∆t

τvfb
σ∆ξi, ∆ξi ∼ N (0, I). (209)

As all other dynamical equations do not have noise, their simulation remains equivalent to the
simulation with the forward Euler method. Algorithm 4 provides the pseudo code of the simulation
of DFC during the feedback weight training phase.
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Algorithm 4: Simulation of DFC for training the feedback weights.
Initialize layer activations and parameter update buffers:
for i in range(1,L) do

vi[1] = v−i
ri[1] = r−i
uint[1] = 0
∆Qi = 0

for k in range(1,Kmax) do
Update controller:
e[k] = r−L − rL[k]

uint[k + 1] = uint[k] + ∆t
τu

(e[k]− α̃u[k])

u[k + 1] = uint[k + 1] + kpe[k]
Update network:
for i in range(1,L) do

vff
i [k + 1] = Wiφ(vi−1[k + 1]) + bi

Sample noise and let it enter in the feedback compartment with non-instantaneous
dynamics:

∆ξi ∼ N (0, I)

vfb
i [k + 1] = vfb

i [k] + ∆t
τ
vfb

(
− vfb

i [k] +Qiu[k + 1]
)

+
√

∆t
τ
vfb
σ∆ξi

vi[k + 1] = vi[k] + ∆t
τv

(−vi[k] + vff
i [k + 1] + vfb

i [k + 1])

ri[k + 1] = φ(vi[k + 1])
Buffer feedback weight updates:
∆Qi = ∆Qi − vfb

i [k]u[k + 1]− βQi
Update feedback parameters with ∆Qi/Kmax and an optimizer of choice

F Experiments

F.1 Description of the alignment measures

In this section, we describe the alignment measures used in Fig. 3 in detail.

Condition 2. Fig. 3A describes how well the network satisfies Condition 2. For this, we project Q
onto the column space of JT , for which we use a projection matrix PJT :

PJTQ = JT (JJT )−1JQ. (210)

Then, we compare the Frobenius norm of the projection of Q with the norm of Q, via its ratio:

ratioCon2 =
‖PJTQ‖F
‖Q‖F

. (211)

Notice that a ratioCon2 = 1 indicates that the column space of Q lies fully inside the column space of
JT , hence indicating that Condition 2 is satisfied.12 At the opposite extreme, ratioCon2 = 0 indicates
that the column space of Q is orthogonal on the column space of JT .

Condition 1. Fig. 3C describes how well the network satisfies Condition 1. This condition states
that all layers (except the output layer) have an equal L2 norm. To measure how well Condition 1 is
satisfied, we compute the standard deviation of the layer norms over the layers, and normalize it by

12Note that in degenerate cases, Q could be lower rank and still have ratioCon2 = 1 if its (reduced) column
space lies inside the column space of JT . As Q is a skinny matrix, we assume it is always of full rank and do
not consider this degenerate scenario.
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the average layer norm:

ratioCon1 =
1
L

∑L
i=0

(
‖ri‖2 −mean(‖r‖2)

)2
mean(‖r‖2)

(212)

mean(‖r‖2) =
1

L

L∑
i=0

‖ri‖2 (213)

We take ri = r−i to compute this measure, but other values of ri during the dynamics would also work,
as they remain close together for a small target stepsize λ. Now, notice that ratioCon1 = 0 indicates
perfect compliance with Condition 1, as then all layers have the same norm, and ratioCon1 = 1
indicates that the layer norms vary by mean(‖r‖2) on average, hence indicating that Condition 1 is
not at all satisfied.

Stability measure. Fig. 3E describes the stability of DFC during training. For this, we plot the
maximum real part of the eigenvalues of the total system matrix API around the steady state (see
eq. (136)), which describes the dynamics of DFC around the steady state (incorporating kp and the
actual time constants, in contrast to Condition 3).

Alignment with MN updates. Fig. 3B describes the alignment of the DFC updates with the ideal
weighted MN updates. The MN updates are computed as follows:

∆W̄MN = RJ†δL, (214)

with R defined in eq. (70) and W̄ the concatenated vectorized form of all weights Wi. For the
alignment measurements in the computer vision experiments (see Section F.5.3) we use a damped
variant of the MN updates:

∆W̄MN = RJT (JJT + γI)−1δL, (215)

with γ some positive damping constant. The damping constant is needed to incorporate the damping
effect of the leakage constant, α, into the dynamical inversion, but also to reflect an implicit damping
effect. Meulemans et al. [21] showed that introducing a higher damping constant, γ, in the pseu-
doinverse (214) reflected better the updates made by TP, which uses learned inverses. We found
empirically that a higher damping constant, γ, also reflects better the updates made by DFC. Using a
similar argumentation, we hypothesize that this implicit damping in DFC originates from the fact
that, in nonlinear networks, J changes for each batch sample and hence Q cannot satisfy Condition 2
for each batch sample. Consequently, Q tries to satisfy Condition 2 as good as possible for all batch
samples, but does not satisfy it perfectly, resulting in a phenomenon that can be partially described by
implicit damping.

Alignment with GN updates. Fig. 3D describes the alignment of the DFC updates with the ideal
GN updates. The GN updates are computed as follows:

∆W̄GN = J†
W̄
δL, (216)

with JW̄ =
∂r−L
∂W̄

, evaluated at the feedforward activations r−i . Similarly to the MN updates, we
also introduce a damped variant of the GN updates, which is used in the computer vision alignment
experiments (Section F.5.3):

∆W̄GN = JTW̄ (JW̄J
T
W̄ + γI)−1δL, (217)

where the damping constants, γ and α, reflect the leakage constant and the implicit damping effects,
respectively.

Alignment with DFC-SSA updates. Finally, Fig. 3F describes the alignment of the DFC updates
with the DFC-SSA updates which use the linearized analytical steady-state solution of the dynamics.
The DFC-SSA updates are computed as follows (see also Algorithm 3):

∆W̄ SSA = RssQ(JQ+ α̃I)−1δL, (218)

with Rss defined in eq. (70) but with the steady-state values ri,ss instead of r−i .
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F.2 Description of training

Training phases. We iterate between one epoch of training the forward weights and X epochs of
training the feedback weights, with X ∈ [1, 2, 3] a hyperparameter. The extra epochs for training
the feedback weights enable the feedback weights to better satisfy Conditions 2 and 3 when the
forward weights are changing fast (e.g., during early training), and slightly improve the performance
of DFC. Before the training starts, we pre-train the feedback weights for 10 epochs, starting from a
random configuration, to ensure that the network is stable when the training begins and Condition 2
is approximately satisfied.

Student-teacher toy regression. For the toy experiments of Fig. 3, we use the student-teacher
regression paradigm. Here, a randomly initialized teacher generates a synthetic regression dataset
using random inputs. A separate randomly initialized student is then trained on this synthetic dataset.
We used more hidden layers and neurons for the teacher network compared to the student network,
such that the student network cannot get ‘lucky’ by being initialized close to the teacher network.

Optimizer. In student-teacher toy regression experiments, we use vanilla SGD without momentum
as an optimizer. In the computer vision experiments, we use a separate Adam optimizer [44] for the
forward and feedback weights, as this improves training results compared to vanilla SGD. As Adam
was designed for BP updates, it will likely not be an optimal optimizer for DFC, which uses MN
updates. An interesting future research direction is to design new optimizers that are tailored towards
the MN updates of DFC, to further improve its performance. We used gradient clipping for all DFC
experiments to prevent too large updates when the inverse of J is poorly conditioned.

Training length and reported test results. For the classification experiments, we used 100 epochs
of training for the forward weights (and a corresponding amount of feedback training epochs,
depending onX). As the autoencoder experiment was more resource-intensive, we trained the models
for only 25 epochs there, as this was sufficient for getting near-perfect autoencoding performance
when visually inspected (see Fig. S14). For all experiments, we split the 60000 training samples into
a validation set of 5000 samples and a training set of 55000 samples. The hyperparameter searches
are done based on the validation accuracy (validation loss for MNIST-autoencoder and train loss for
MNIST-train) and we report the test results corresponding to the epoch with best validation results in
Table 1.

Weight initializations. All network weights are initialized with the Glorot-Bengio normal initial-
ization [66], except when stated otherwise.

Initialization of the fixed feedback weights. For the variants of DFC with fixed feedback weights,
we use the following initialization:

Qi =

L∏
k=i+1

WT
k , 1 ≤ i ≤ L− 1 (219)

QL = I (220)

For tanh networks, this initialization approximately satisfies Conditions 2 and 3 at the beginning of
training. This is because Q will approximate JT , as the forward weights are initialized by Glorot-
Bengio normal initialization [66], and the network will consequently be in the approximate linear
regime of the tanh nonlinearities.

Freeze QL. For the MNIST-autoencoder experiments, we fixed the output feedback weights to
QL = I , i.e., one-to-one connections between rLandu. As we did not train QL, we also did not
introduce noise in the output layer during the training of the feedback weights. Freezing QL prevents
the noise in the high-dimensional output layer from burying the noise information originating from
the small bottleneck layer and hence enabling better feedback weight training. This measure modestly
improved the performance of DFC on MNIST-autoencoder (without fixing QL, the performance of
all DFC variants was around 0.13 test loss – c.f. Table 1 – which is not a big decrease in performance).
Freezing QL does not give us any advantages over BP or DFA, as these methods implicitly assume to
have direct access to the output error, i.e., also having fixed feedback connections between the error
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neurons and output neurons equal to the identity matrix. We provided the option to freeze QL into
the hyperparameter searches of all experiments but this is not necessary for optimal performance of
DFC in general, as this option was not always selected by the hyperparameter searches.

Double precision. We noticed that the standard data type float32 of PyTorch [67] caused numer-
ical errors to appear during the last epochs of training when the output error δL is very small. For
small δL, the difference φ(vi)−φ(vff

i ) in the forward weight updates (5) is very small and can result
in numerical underflow. We solved this numerical problem by using float64 (double precision) as
data type.

F.3 Architecture details

We use fully connected (FC) architectures for all experiments.

• Classification experiments (MNIST, Fashion-MNIST, MNIST-train): 3 FC hidden layers of
256 neurons with tanh nonlinearity and 1 softmax output layer of 10 neurons.

• MNIST-autoencoder: 256-32-256 FC hidden layers with tanh-linear-tanh nonlinearities and
a linear output layer of 784 neurons.

• Student-teacher regression (Fig. 3): 2 FC hidden layers of 10 neurons and tanh nonlinearities,
a linear output layer of 5 neurons, and input dimension 15.

Absorbing softmax into the cross-entropy loss. For the classification experiments (MNIST,
Fashion-MNIST, and MNIST-train), we used a softmax output nonlinearity in combination with
the cross-entropy loss. As the softmax nonlinearity and cross-entropy loss cancel out each others
curvatures originating from the exponential and log terms, respectively, it is best to combine them
into one output loss:

Lcombined = −
B∑
b=1

y(b)T log
(
softmax(r

(b)
L )
)
, (221)

with y(b) the one-hot vector representing the class label of sample b, and log the element-wise
logarithm. Now, as the softmax is absorbed into the loss function, the network output rL can be taken
linear and the output target is computed with eq. (3) using Lcombined.

F.4 Hyperparameter searches

All hyperparameter searches were based on the best validation accuracy (best validation loss for
MNIST-autoencoder and last train loss for MNIST-train) over all training epochs, using 5000 valida-
tion datasamples extracted from the training set. We use the Tree of Parzen Estimators hyperparameter
optimization algorithm [68] based on the Hyperopt [69] and Ray Tune [70] Python libraries.

Due to the heavy computational cost of simulating DFC, we performed only hyperparameter searches
for DFC-SSA, DFC-SSA (fixed), BP and DFA (200 hyperparameter samples for all methods). We
used the hyperparameters found for DFC-SSA and DFC-SSA (fixed) for DFC and DFC-SS, and DFC
(fixed) and DFC-SS (fixed), respectively, together with standard simulation hyperparameters for the
forward weight training that proved to work well (kp = 2, τu = 1, τv = 0.2, forward Euler stepsize
∆t = 0.02 and 1000 simulation steps).

Tables S2 and S3 provide the hyperparameters and search intervals that we used for DFC-SSA in
all experiments. We included the simulation hyperparameters for the feedback training phase in the
search to prevent us from fine-tuning the simulations by hand. Note that we use different simulation
hyperparameters for the forward training phase (see paragraph above) and the feedback training
phase (see Table S3). This is because the simulation of the feedback training phase needs a small
stepsize, ∆tfb, and a small network time constant, τv, to properly simulate the stochastic dynamics.
For the forward phase, however, we need to simulate over a much longer time interval, so taking
small ∆t and τv13 would be too resource-intensive. When using kp = 2, τu = 1, and τv = 0.2
during the simulation of the forward training phase, much bigger timesteps such as ∆t = 0.02 can

13The simulation stepsize, ∆t, needs to be smaller than the time constants.
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be used. Note that these simulation parameters do not change the steady state of the controller and
network, as α̃ is independent from kp in our implementation. We also differentiated α̃ in the forward
training phase from α̃fb in the feedback training phase, as the theory predicted that a bigger leakage
constant is needed during the feedback training phase in the first epochs. However, toy simulations
in Section C suggest that the feedback learning also works for smaller α̃, which we did not explore
in the computer vision experiments. Finally, we used lr · λ and λ as hyperparameters in the search
instead of lr and λ separately, as lr and λ have a similar influence on the magnitude of the forward
parameter updates. The specific hyperparameter configurations for all experiments can be found in
our codebase.14

Table S2: Hyperparameter symbols and meaning.
Symbol Hyperparameter

lr Learning rate of the Adam optimizer for the forward parameters
ε Parameter of the Adam optimizer for the forward parameters
α̃ Leakage term of the controller dynamics (206) during training of the forward weights
λ Output target stepsize (see (3))

lrfb Learning rate of the Adam optimizer for the feedback parameters
lrfb, pre-train Learning rate of the Adam optimizer for the feedback parameters during pre-training

εfb Parameter of the Adam optimizer for the feedback parameters
α̃fb Leakage term of the controller dynamics (206) during the training of the feedback weights
β Weight decay term for the feedback weights
kp,fb Proportional control constant during training of the feedback weights
τv Time constant of the network dynamics, during training of the feedback weights
τvfb Time constant of the feedback compartment during feedback weight training
σ Standard deviation of the noise perturbation during training of the feedback weights
X Number of feedback training epochs after each forward training epoch

∆tfb Stepsize for simulating the dynamics during feedback weight training
tmax,fb Number of simulation steps during feedback weight training

freeze_QL Flag for fixing the feedback weights QL to the identity matrix

Table S3: Hyperparameter search intervals for DFC.
Hyperparameter Search interval

lr · λ [10−7 : 10−4]
ε [10−8 : 10−5]
α̃ [10−5 : 10−1]
λ [10−3 : 10−1]

lrfb [1 · 10−6 : 5 · 10−4]
lrfb, pre-train [5 · 10−5 : 1 · 10−3]

εfb [10−8 : 10−5]
α̃fb [0.2 : 1.]
β {0; 10−5; 10−3; 10−1}
kp,fb [0 : 0.2]
τv [5 · 10−3 : 1.5 · 10−2]
τvfb [0.1 : 0.5]
σ [10−3 : 10−1]
X {1; 2; 3}

∆tfb [1 · 10−3 : 5 · 10−3]
tmax,fb [30 : 60]

freeze_QL {True; False}

Table S4: Hyperparameter search intervals for BP and DFA.
Hyperparameter Search interval

lr [10−8 : 10−2]
ε [10−8 : 10−5]

14PyTorch implementation of all methods is available at https://github.com/meulemansalex/deep_
feedback_control.
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F.5 Extended experimental results

In this section, we provide extra experimental results accompanying the results of Section 6.

F.5.1 Training losses of the computer vision experiments

Table S5 provides the best training loss over all epochs for all the considered computer vision
experiments. Comparing the train losses with the test performances in Table 1, shows that good test
performance is not only caused by good optimization properties (i.e., low train loss) but also by other
mechanisms, such as implicit regularization. The distinction is most pronounced in the results for
MNIST. These results highlight the need to disentangle optimization from implicit regularization
mechanisms to study the learning properties of DFC, which we do in the MNIST-train experiments
provided in Table 1.

Table S5: Best training loss over a training of 100 epochs (classification) or 25 epochs (autoencoder).
We use the Adam optimizer [44]. Architectures: 3x256 fully connected (FC) tanh hidden layers
and softmax output (classification), 256-32-256 FC hidden layers for autoencoder MNIST with
tanh-linear-tanh nonlinearities, and a linear output. Mean ± std (5 random seeds).

MNIST Fashion-MNIST MNIST-autoencoder

BP 7.51±1.06 · 10−4 1.19±0.064 · 10−2 9.57±0.080 · 10−2

DFC 1.93±3.83 · 10−4 8.84±0.87 · 10−2 1.16±0.023 · 10−1

DFC-SSA 2.51±1.76 · 10−5 1.74±0.037 · 10−1 1.16±0.009 · 10−1

DFC-SS 7.71±5.04 · 10−6 1.72±0.022 · 10−1 1.14±0.006 · 10−1

DFC (fixed) 9.04±3.87 · 10−4 2.34±0.46 · 10−1 3.34±0.06 · 10−1

DFC-SSA (fixed) 1.32±0.22 · 10−3 1.69±0.24 · 10−1 3.20±0.041 · 10−1

DFC-SS (fixed) 1.66±0.44 · 10−3 1.30±0.11 · 10−1 3.23±0.04 · 10−1

DFA 3.59±0.14 · 10−4 6.43±0.37 · 10−2 3.05±0.021 · 10−1

F.5.2 Alignment plots for the toy experiment

Here, we show the alignment of the methods used in the toy experiments of Fig. 3 with MN updates
and compare it with the alignment with BP updates. We plot the alignment angles per layer to
investigate whether the alignment differs between layers. Fig. S6 shows the alignment of all methods
with the damped MN angles and Fig. S7 with the BP angles. We see clearly that the alignment
with MN angles is much better for the DFC variants with trained feedback weights compared to the
alignment with BP angles, hence indicating that DFC uses a fundamentally different approach to
learning, compared to BP, and thereby confirming the theory.

F.5.3 Alignment plots for computer vision experiments

Figures S8 and S9 show the alignment of all methods with MN and BP updates, respectively. In
contrast to the toy experiments in the previous section, now the alignment with BP is much closer
to the alignment with MN updates. There are two main reasons for this. First, the classification
networks we used have big hidden layers and a small output layer. In this case, the network Jacobian
J has many rows and only very few columns, which causes J† to approximately align with JT (see
among others Theorem S12 in Meulemans et al. [21]). Hence, the BP updates will also approximately
align with the MN updates, explaining the better alignment with BP updates on MNIST compared
to the toy experiments. Secondly, due to the nonlinearity of the network, J changes for each
datasample and Q cannot satisfy Condition 2 exactly for all datasamples. We try to model this effect
by introducing a higher damping constant, γ = 1, for computing the ideal damped MN updates
(see Section F.1). However, this higher damping constant is not a perfect model for the phenomena
occurring. Consequently, the alignment of DFC with the damped MN updates is suboptimal and a
better alignment could be obtained by introducing other variants of MN updates that more accurately
describe the behavior of DFC on nonlinear networks.15 Note that nonetheless, the alignment with
MN updates is better compared to the alignment with BP updates.

15Now, we perform a small grid-search to find a γ ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10} that best
aligns with the DFC and DFA updates after 3 epochs of training. As this is a very coarse-grained approach,
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Surprisingly, for Fashion-MNIST and MNIST-autoencoder, the DFC updates in the last and penulti-
mate layer align better with BP than with MN updates (see Figures S11-S12). One notable difference
between the configurations used for MNIST on the one hand and Fashion-MNIST and MNIST-
autoencoder on the other hand, is that the hyperparameter search selected for the latter two to fix the
output feedback weights QL to the identity matrix (see Section F.2 for a description and discussion).
This freezing of the output feedback weights slightly improved the performance of the DFC methods.
Freezing QL to the identity matrix explains why the output weight updates align closely with BP, as
the postsynaptic plasticity signal is now an integrated plus proportional version of the output error.
However, it is surprising that the alignment in the penultimate layer is also changed significantly. We
hypothesize that this is due to the fact that the feedback learning rule (13) was designed for learning
all feedback weights (leading to Theorem 6) and that freezing QL breaks this assumption. However,
extra investigation is needed to fully understand the occurring phenomena.

better alignment angles with damped MN updates could be obtained by a more fine-tuned approach for finding
an optimal γ.
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F.5.4 Autoencoder images

Fig. S14 shows the autoencoder output for randomly selected samples of BP, DFC-SSA, DFC-SSA
(fixed), and DFA, compared with the autoencoder input. As DFC, DFC-SS, and DFC-SSA have very
similar test losses and hence autoencoder performance, we only show the plots for DFC-SSA and
DFC-SSA (fixed). Fig. S14 shows that BP and the DFC variants with trained weights have almost
perfect autoencoding performance when visually inspected, while DFA and the DFC (fixed) variants
do not succeed in autoencoding their inputs, which is also reflected in the performance results (see
Table 1.

Figure S14: Visual representation of the autoencoder outputs for BP, DFC-SSA, DFC-SSA (fixed),
and DFA, compared to the autoencoder input.

F.6 Resources and compute

For the computer vision experiments, we used GeForce RTX 2080 and GeForce RTX 3090 GPUs.
Table S6 provides runtime estimates for 1 epoch of feedforward training and 3 epochs of feedback
training (if applicable) for the DFC methods, using a GeForce RTX 2080 GPU. For MNIST and
Fashion-MNIST we do 100 training epochs and for MNIST-autoencoder 25 training epochs. We
did hyperparameter searches of 200 samples on all datasets for DFC-SSA and DFC-SSA (fixed)
and reused the hyperparameter configuration for the other DFC variants. For BP and DFA we also
performed hyperparameter searches of 200 samples for all experiments, with computational costs
negligible compared to DFC.

Table S6: Estimated run times in seconds per epoch (both feedforward and feedback training included)
on GeForce RTX 2080 GPU for the experiments of Table 1

MNIST & Fashion-MNIST MNIST-autoencoder

DFC 500s 1500s
DFC-SSA 130s 450s
DFC-SS 500s 1500s

DFC (fixed) 370s 1350s
DFC-SSA (fixed) 4s 300s
DFC-SS (fixed) 370s 1350s

F.7 Dataset and Code licenses

For the computer vision experiments, we used the MNIST dataset [40] and the Fashion-MNIST
dataset [41], which have the following licenses:

• MNIST: https://creativecommons.org/licenses/by-sa/3.0/

• Fashion-MNIST:https://opensource.org/licenses/MIT

For the implementation of the methods, we used PyTorch [71] and built upon the codebase of
Meulemans et al. [21], which have the following licenses:
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• Pytorch: https://github.com/pytorch/pytorch/blob/master/LICENSE

• Meulemans et al. [21]: https://www.apache.org/licenses/LICENSE-2.0

G DFC and multi-compartment models of cortical pyramidal neurons

As mentioned in the Discussion, the multi-compartment neuron of DFC (see Fig. 1C) is closely
related to recent dendritic compartment models of the cortical pyramidal neuron [23, 25, 26, 47]. In
the terminology of these models, our central, feedforward, and feedback compartments, correspond to
the somatic, basal dendritic, and apical dendritic compartments of pyramidal neurons. Here, we relate
our network dynamics (1) in more detail to the proposed pyramidal neuron dynamics of Sacramento
et al. [23]. Rephrasing their dynamics for the somatic membrane potentials of pyramidal neurons
(equation (1) of Sacramento et al. [23]) with our own notation, we get

τv
d
dt
vi(t) = −glkvi(t) + gB

(
vff
i (t)− vi(t)

)
+ gA

(
vfb
i (t)− vi(t)

)
+ σξi(t). (222)

Like DFC, the network is structured in multiple layers, 0 ≤ i ≤ L, where each layer has its own
dynamical equation as defined above. Basal and apical dendritic compartments (vff

i and vfb
i resp.) of

pyramidal cells are coupled towards the somatic compartment (vi) with fixed conductances gB and
gA, and leakage glk. Background activity of all compartments is modeled by an independent white
noise input ξi ∼ N (0, I). The dendritic compartment potentials are given in their instantaneous
forms (c.f. equations (3) and (4) in Sacramento et al. [23])

vff
i (t) = Wiφ(vi−1(t)) (223)

vfb
i (t) = Qiu(t) (224)

with Wi the synaptic weights of the basal dendrites, Qi the synaptic weights of the apical dendrites, φ
a nonlinear activation function transforming the voltage levels to firing rates, and u a feedback input.

Filling the instantaneous forms of vff and vfb into the dynamics of the somatic compartment (222),
and reworking the equation, we get:

τ̃v
d
dt
vi(t) = −vi + g̃BWiφ(vi−1(t)) + g̃AQiu(t) + σ̃ξi(t), (225)

with g̃B = gB
glk+gB+gA

, g̃A = gA
glk+gB+gA

, σ̃ = σ
glk+gB+gA

and τ̃v = τv
glk+gB+gA

. When we absorb
g̃B and g̃A into Wi and Qi, respectively, we recover the DFC network dynamics (1) with noise
added. Hence, we see that not only the multi-compartment neuron model of DFC is closely related
to dendritic compartment models of pyramidal neurons, but also the neuron dynamics used in DFC
are intimately connected to models of cortical pyramidal neurons. What sets DFC apart from the
cortical model of Sacramento et al. [23] is its unique feedback dynamics that make use of a feedback
controller and lead to approximate GN optimization.

H Feedback pathway designs compatible with DFC

To present DFC in its most simple form, we used direct linear feedback mappings from the output
controller towards all hidden layers. However, DFC is also compatible with more general feedback
pathways.

Consider vfb
i = gi(u) with gi a smooth mapping from the control signal u towards the feedback

compartment of layer i, leading to the following network dynamics:

τv
d
dt
vi(t) = −vi(t) +Wiφ

(
vi−1(t)

)
+ gi

(
u(t)

)
1 ≤ i ≤ L. (226)

The feedback path gi could be for example a multilayer neural network (see Fig. S15A) and different
gi could share layers (see Fig. S15B). As the output stepsize λ is taken small in DFC, the control
signal u will also remain small. Hence, we can take a first-order Taylor approximation of gi around
u = 0:

gi(u) = Jgiu +O(λ2), (227)
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with Jgi = ∂gi(u)
∂u

∣∣
u=0

. With this linear approximation and replacing Qi by Jgi , all previous
theoretical results from Section 3 hold, as they consider the limit of λ→ 0. Furthermore, the local
stability results of Section 4 can be recovered by replacing Qi in Condition 3 with Jgi evaluated
at u = uss. Finally, the feedback learning results (Section 5) can be extended to this setting, by
learning the synaptic strengths connecting the feedback path gi to the network layers vi according to
the proposed feedback learning rule (13). For small σ, u will remain small and hence the feedback
learning rule will align Jgi , correctly evaluated around u = 0, with JT (JJT + γI)−1.

Figure S15: Schematic illustration of more general feedback paths compatible with DFC.

Until now, we considered general feedback paths gi and linearized them around u = 0, thereby
reducing their expressive power to linear mappings. As the forward Jacobian J changes for each
datasample in nonlinear networks, it can be helpful to have a feedback path for which Jgi also
changes for each datasample. Then, each Jgi can specialize its mapping for a particular cluster of
datasamples, thereby enabling a better compliance to Conditions 2 and 3 for each datasample. To
let Jgi change depending on the considered datasample and hence activations vi of the network, the
feedback path gi needs to be ‘influenced’ by the network activations vi.

One interesting direction for future work is to have connections from the network layers vi onto the
layers of the feedback path gi, that can modulate the nonlinear activation function φg of those layers.
By modulating φg , the feedback Jacobian Jgi will depend on the network activations vi and, hence,
will change for each datasample. Interestingly, there are many candidate mechanisms to implement
such modulation in biological cortical neurons [72, 73, 74].

Another possible direction is to integrate the feedback path gi into the forward network (1) and
separate forward signals from feedback signals by using neural multiplexed codes [26, 75]. As the
feedback path gi is now integrated into the forward pathway, its Jacobian Jgi can be made dependent
on the forward activations vi. While being a promising direction, merging the forward pathway with
the feedback path is not trivial and significant future work would be needed to accomplish it.

I Discussion on the biological plausibility of the controller

The feedback controller used by DFC (see Fig. 1A and eq. (4)) has three main components. First,
it needs to have a way of computing the control error e(t). Second, it needs to perform a leaky
integration (uint) of the control error. Third, the controller needs to multiply the control error by kp.

Following the majority of biologically plausible learning methods [9, 14, 15, 16, 20, 21, 22, 26, 42],
we assume to have access to an output error that the feedback controller can use. As the error is a
simple difference between the network output and an output target r∗L, this should be relatively easily
computable. Another interesting aspect of computing the output error is the question of where the
output target r∗L could originate from in the brain. This is currently an open question in the field [76]
which we do not aim to address in this work.

Integrating neural signals over long time horizons is a well-studied subject concerning many ap-
plication areas, ranging from oculomotor control to maintaining information in working memory
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[58, 59, 60, 61, 62]. To provide intuition, a straightforward approach to leaky integration is to use
recurrent self-connections with strength (1− α). Then, the same neural dynamics used in (1) give
rise to

τu
d
dt
uint(t) = −uint(t) +Wine(t) + (1− α)uint(t) = Wine(t)− αuint(t). (228)

When we take the input weights Win equal to the identity matrix, we recover the dynamics for uint(t)
described in (4).

Finally, a multiplication of the control error by kp can simply be done by having synaptic weights
with strength kp.
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