
Published as a conference paper at ICLR 2021

NEURAL NETWORKS WITH LATE-PHASE WEIGHTS

Johannes von Oswald*, Seijin Kobayashi*, Alexander Meulemans,
Christian Henning, Benjamin F. Grewe, João Sacramento
* – equal contribution

Institute of Neuroinformatics
University of Zürich and ETH Zürich
Zürich, Switzerland
{voswaldj,seijink,ameulema,henningc,bgrewe,rjoao}@ethz.ch

ABSTRACT

The largely successful method of training neural networks is to learn their weights
using some variant of stochastic gradient descent (SGD). Here, we show that the
solutions found by SGD can be further improved by ensembling a subset of the
weights in late stages of learning. At the end of learning, we obtain back a single
model by taking a spatial average in weight space. To avoid incurring increased
computational costs, we investigate a family of low-dimensional late-phase weight
models which interact multiplicatively with the remaining parameters. Our re-
sults show that augmenting standard models with late-phase weights improves
generalization in established benchmarks such as CIFAR-10/100, ImageNet and
enwik8. These findings are complemented with a theoretical analysis of a noisy
quadratic problem which provides a simplified picture of the late phases of neural
network learning.

1 INTRODUCTION

Neural networks trained with SGD generalize remarkably well on a wide range of problems. A
classic technique to further improve generalization is to ensemble many such models (Lakshmi-
narayanan et al., 2017). At test time, the predictions made by each model are combined, usually
through a simple average. Although largely successful, this technique is costly both during learning
and inference. This has prompted the development of ensembling methods with reduced complex-
ity, for example by collecting models along an optimization path generated by SGD (Huang et al.,
2017), by performing interpolations in weight space (Garipov et al., 2018), or by tying a subset of
the weights over the ensemble (Lee et al., 2015; Wen et al., 2020).

An alternative line of work explores the use of ensembles to guide the optimization of a single
model (Zhang et al., 2015; Pittorino et al., 2020). We join these efforts and develop a method that
fine-tunes the behavior of SGD using late-phase weights: late in training, we replicate a subset of the
weights of a neural network and randomly initialize them in a small neighborhood. Together with
the stochasticity inherent to SGD, this initialization encourages the late-phase weights to explore the
loss landscape. As the late-phase weights explore, the shared weights accumulate gradients. After
training we collapse this implicit ensemble into a single model by averaging in weight space.

Building upon recent work on ensembles with shared parameters (Wen et al., 2020) we explore a
family of late-phase weight models involving multiplicative interactions (Jayakumar et al., 2020).
We focus on low-dimensional late-phase models that can be ensembled with negligible overhead.
Our experiments reveal that replicating the ubiquitous batch normalization layers (Ioffe & Szegedy,
2015) is a surprisingly simple and effective strategy for improving generalization1. Furthermore,
we find that late-phase weights can be combined with stochastic weight averaging (Izmailov et al.,
2018), a complementary method that has been shown to greatly improve generalization.

1We provide code to reproduce our experiments at https://github.com/seijin-kobayashi/
late-phase-weights

1

ar
X

iv
:2

00
7.

12
92

7v
4

 [
cs

.L
G

]
 1

1
A

pr
 2

02
2

https://github.com/seijin-kobayashi/late-phase-weights
https://github.com/seijin-kobayashi/late-phase-weights

Published as a conference paper at ICLR 2021

2 METHODS AND MODELS

2.1 LEARNING WITH LATE-PHASE WEIGHTS

Late-phase weights. To apply our learning algorithm to a given neural network model fw we
first specify its weights w in terms of two components, base and late-phase (θ and φ, resp.). The
two components interact according to a weight interaction function w = h(θ, φ). Base weights
are learned throughout the entire training session, and until time step T0 both θ and φ are learned
and treated on equal grounds. At time step T0, a hyperparameter of our algorithm, we introduce K
late-phase components Φ = {φk}Kk=1, that are learned together with θ until the end.

This procedure yields a late-phase ensemble of K neural networks with parameter sharing: reusing
the base weights θ, each late-phase weight φk defines a model with parameters wk = h(θ, φk).

Late-phase weight averaging at test time. Our ensemble defined by the K late-phase weight
configurations in Φ is kept only during learning. At test time, we discard the ensemble and obtain
a single model by averaging over the K late-phase weight components. That is, given some input
pattern x, we generate a prediction y(x) using the averaged model, computed once after learning:

y(x) = fw(x), w ≡ h

(
θ,

1

K

K∑
k=1

φk

)
. (1)

Hence, the complexity of inference is independent ofK, and equivalent to that of the original model.

Late-phase weight initialization. We initialize our late-phase weights from a reference base
weight. We first learn a base parameter φ0 from time step t = 0 until T0, treating φ0 as any
other base parameter in θ. Then, at time t = T0, each configuration φk is initialized in the vicinity
of φ0. We explore perturbing φ0 using a symmetric Gaussian noise model,

φk = φ0 +
σ0

Z(φ0)
εk, (2)

where εk is a standard normal variate of appropriate dimension and σ0 is a hyperparameter con-
trolling the noise amplitude. We allow for a φ0-dependent normalization factor, which we set so
as to ensure layerwise scale-invariance, which helps finding a single σ0 that governs the initializa-
tion of the entire network. More concretely, for a given neural network layer l with weights φ(l)0 of
dimension D(l), we choose Z(φ

(l)
0) =

√
D(l)/‖φ(l)0 ‖.

Our perturbative initialization (Eq. 2) is motivated by ongoing studies of the nonconvex, high-
dimensional loss functions that arise in deep learning. Empirical results and theoretical analyses
of simplified models point to the existence of dense clusters of connected solutions with a locally-
flat geometry (Hochreiter & Schmidhuber, 1997a) that are accessible by SGD (Huang et al., 2017;
Garipov et al., 2018; Baldassi et al., 2020). Indeed, the eigenspectrum of the loss Hessian evalu-
ated at weight configurations found by SGD reveals a large number of directions of low curvature
(Keskar et al., 2017; Chaudhari et al., 2019; Sagun et al., 2018). For not yet completely under-
stood reasons, this appears to be a recurring phenomenon in overparameterized nonlinear problems
(Brown & Sethna, 2003; Waterfall et al., 2006).

Based on these observations, we assume that the initial parameter configuration φ0 can be perturbed
in a late phase of learning without leading to mode hopping across the different models wk. While
mode coverage is usually a sought after property when learning neural network ensembles (Fort
et al., 2020), here it would preclude us from taking the averaged model at the end of learning (Eq. 1).

Stochastic learning algorithm. Having decomposed our weights into base and late-phase com-
ponents, we now present a stochastic algorithm which learns both θ and Φ. Our algorithm works on
the standard stochastic (minibatch) neural network optimization setting (Bottou, 2010). Given a loss
function L(D, w) = 1

|D|
∑
x∈D L(x,w) to be minimized with respect to the weights w on a set of

data D, at every round we randomly sample a subsetM from D and optimize instead the stochastic
loss L(M, w). However, in contrast to the standard setting, in late stages of learning (t > T0) we
simultaneously optimize K parameterizationsW := {wk | wk = h(θ, φk)}Kk=1, instead of one.

2

Published as a conference paper at ICLR 2021

We proceed by iteration over W . At each step k, we sample a minibatch Mk and immediately
update the late-phase weights φk, while accumulating gradients over the shared base weights θ.
Such gradient accumulation has been previously used when learning ensembles (Lee et al., 2015;
Wen et al., 2020) and multi-task models (Rebuffi et al., 2017) with shared base parameters. A
single iteration is finally concluded by changing the base weights in the direction opposite of the
accumulated gradient. We scale the accumulated gradient by γθ; setting γθ = 1/K recovers the
original step size in θ, but other choices are possible. In particular, we find that a large γθ of unit
size is in practice often tolerated, resulting in accelerated learning.

Algorithm 1: Late-phase learning
Require: Base weights θ,
late-phase weight set Φ, dataset D,
gradient scale factor γθ, loss L
Require: Training iteration t > T0
for 1 ≤ k ≤ K do
Mk ← Sample minibatch from D
∆θk ← ∇θ L(Mk, θ, φk)
φk ← Uφ(φk,∇φk

L(Mk, θ, φk))

θ ← Uθ(θ, γθ
∑K
k=1 ∆θk)

We summarize an iteration of our method in Algo-
rithm 1, where the loss L(M, θ, φ) is now seen as a
function of θ and φ. We opt for a general presenta-
tion using unspecified gradient-based update operators
Uφ and Uθ. These operators can be set to optimiz-
ers of choice. For instance, our method might benefit
from additional noise injection onto parameter updates
(Welling & Teh, 2011). Furthermore, late-phase opti-
mizers need not coincide with the optimizer used in
the early phase. In our work we typically set Uφ and
Uθ to a single step of SGD with Nesterov momentum
(Nesterov, 2004), and explore Adam (Kingma & Ba,
2015) and plain SGD in a smaller set of experiments.

2.2 LATE-PHASE WEIGHT MODELS

As detailed next, we consider a number of distinct late-phase weight models in our experiments.
In particular, we explore weight interaction functions h in which late-phase weights have low di-
mensionality, to avoid a large increase in complexity with the ensemble size K. To counteract this
reduced dimensionality, we make extensive use of multiplicative base-late weight interactions. This
design choice is motivated by the large expressive power of multiplicative interactions despite low
dimensionality, which has been demonstrated in a wide range of settings (Jayakumar et al., 2020).

Late-phase batch normalization layers. Batch normalization layers (BatchNorm; Ioffe &
Szegedy, 2015) are a staple of current deep neural network models. Besides standardizing the ac-
tivity of the layer they are applied to, BatchNorm units introduce a learnable multiplicative (scale)
parameter γ and an additive (shift) parameter β. While being low-dimensional, these additional
parameters have large expressive power: it has been shown that learning only γ and β keeping the
remaining weights frozen can lead to significantly lower loss than when learning random subsets of
other weights of matching dimensionality (Frankle et al., 2020; Mudrakarta et al., 2019).

We take the scale and shift parameters of BatchNorm layers as our first choice of late-phase weights;
the base weights are the remaining parameters of the model. Batch statistics are also individually
estimated for each model in W . This late-phase weight parameterization is motivated by (i) the
expressive power of γ and β discussed above, and by (ii) practical considerations, as BatchNorm
layers are generally already present in feedforward neural network models, and are otherwise easy
to implement efficiently.

More concretely, let us consider an affine transformation layer l which maps an input vector r(l−1)

to θ(l)w r(l−1) + θ
(l)
b , where the early-phase weight matrix θ(l)w and bias vector θ(l)b are already stan-

dardized using the respective batch statistics. For this standard layer, our model introduces a multi-
plicative interaction between base and late-phase weights, diag(γ(l)) θ

(l)
w , and an additive interaction

between base and late-phase bias parameters, θ(l)b + β(l).

Late-phase rank-1 matrix weights. We also study a closely related late-phase weight model,
where existing weight matrices – the base components, as before – are multiplied elementwise by
rank-1 matrices (Wen et al., 2020). For a given affine layer l, we define a late-phase weight matrix
with resort to a pair of learnable vectors, φ(l) = u(l) v(l)

T
. Taking the Hadamard product with the

base weight matrix yields the effective weights W (l) = φ(l) ◦ θ(l).

3

Published as a conference paper at ICLR 2021

With this parameterization, we recover the ensemble proposed by Wen et al. (2020), except that here
it is generated late in training using our perturbative initialization (Eq. 2). Unlike BatchNorm layers,
which include the shift parameter, rank-1 late-phase weights interact in a purely multiplicative man-
ner with base weights. We study this model since it is easy to implement on neural networks which
do not feature BatchNorm layers, such as standard long short-term memories (LSTMs; Hochreiter
& Schmidhuber, 1997b).

Hypernetworks with late-phase weight embeddings. Additionally, we generalize the late-phase
weight models described above using hypernetworks (Ha et al., 2017). A hypernetwork generates
the parameters w of a given target neural network fw based on a weight embedding. In our frame-
work, we can use a hypernetwork to implement the interaction function w = h(θ, φ) directly, with
parameters θ corresponding to base weights and embeddings φ to late-phase weights.

We experiment with linear hypernetworks and use the same hypernetwork to produce the weights
of multiple layers, following Savarese & Maire (2019); Ha et al. (2017); von Oswald et al. (2020).
In this scheme, the weight embedding input specifies the target layer whose parameters are being
generated. More specifically, the weight matrix for some layer l belonging to a group of layers g
which share a hypernetwork is given byW (g,l) = θ(g) φ(g,l), where θ(g) and φ(g,l) are appropriately-
sized tensors. Sharing θ(g) over a layer group g allows countering an increase in the overall number
of parameters. We parameterize our hypernetworks such that the weight embedding vectors φ(g,l)
are small, and therefore cheap to ensemble.

Late-phase classification layers. Finally, inspired by Lee et al. (2015), in classification experi-
ments we take the weights of the last linear layer as late-phase weights by default. In modern neural
network architectures these layers do not usually comprise large numbers of parameters, and our
architecture explorations indicated that it is typically beneficial to ensemble them. We therefore
include W (L) in our late-phase weights φ, where W (L) denotes the weights of the final layer L.

3 RESULTS

3.1 NOISY QUADRATIC PROBLEM ANALYSIS

Before turning to real-world learning problems, we first focus on a simplified stochastic optimization
setup which can be analytically studied. We consider the noisy quadratic problem (NQP; Schaul
et al., 2013; Martens, 2016; Wu et al., 2018; Zhang et al., 2019a;b), where the goal is to minimize
the scalar loss

L =
1

2
(w − w∗ + ε)T H (w − w∗ + ε) (3)

with respect to w ∈ Rn. In the equation above, w∗ denotes the target weight vector, which is
randomly shifted by a noise variable ε assumed to follow a Gaussian distribution N (0,Σ). The
(constant) Hessian matrix H controls the curvature of the problem.

2 5 10 15 20 25
K

0.002

0.004

Lo
ss

Ours
Ensemble

Figure 1: Steady-state loss for varying K,
of multiplicative late-phase weights (Ours)
compared to an ensemble of models.

Despite the simplicity of Eq. 3, the NQP captures a
surprising number of empirically-observed aspects of
neural network learning (Zhang et al., 2019a). Here,
we motivate its study as a model of late stages of learn-
ing, by Taylor expanding the loss around a minimum
w∗. Thus, for a sufficiently late initialization time T0
(and small σ0) the NQP is particularly well suited to
study our algorithm.

There are three main strategies to improve the ex-
pected NQP loss after convergence: (i) increase the
minibatch size B, (ii) use more members K in an en-
semble, and (iii) decrease the learning rate η (Zhang
et al., 2019a). Our Algorithm 1 combines the first two
strategies in a non-trivial manner. First, the gradients for base weights θ are averaged during the in-
ner loop over all ensemble members, corresponding to a minibatch-size rescaling by K. Second, we

4

Published as a conference paper at ICLR 2021

introduce K ensemble members, to be averaged in weight space, that only differ in their late-phase
weights φ.

In Appendix C, we show analytically that this combination of an increased effective minibatch size
for θ and introducingK ensemble members for φ is successful, resulting in a scaling of the expected
loss after convergence by 1

K . This analysis holds for general Σ and H , and for both scalar and
hypernetwork multiplicative late-phase weights. Hence, our approach combines the benefits of an
increased effective minibatch size and of ensembling, while yielding a single model after training.

We present a numerical validation of this theoretical result in Fig. 1. Our model includes a multi-
plicative late-phase weight, wk = θ φk with φk ∈ R and θ ∈ Rn. We simulate a standard instance
of the NQP, with diagonal Hessian Hii = 1/i and Σ = H−1 (cf. Zhang et al., 2019a), and report
the average loss after convergence. Hyperparameters are given in Appendix C. As predicted by the
theory, the loss falls as ∼ 1/K with increasing ensemble size K, and our algorithm performs on par
with a full ensemble of K models trained independently with gradient descent.

3.2 CIFAR-10/100 EXPERIMENTS

To test the applicability of our method to more realistic problems, we next augment standard neu-
ral network models with late-phase weights and examine their performance on the CIFAR-10 and
CIFAR-100 image classification benchmarks (Krizhevsky, 2009). We use standard data preprocess-
ing methods (cf. Appendix A) and train our models for 200 epochs from random initializations,
except when noted otherwise. All evaluated methods are trained using the same amount of data.

Besides SGD (with Nesterov momentum), we also investigate stochastic weight averaging (SWA;
Izmailov et al., 2018), a recent reincarnation of Polyak averaging (Polyak & Juditsky, 1992) that
can strongly improve neural network generalization. For completeness, we present pseudocode for
SWA in Algorithm 2 and SGD with Nesterov momentum in Algorithm 3 (cf. Appendix A). When
learning neural networks with late-phase weights we set Uφ and Uθ to one step of SGD (or SGD
wrapped inside SWA).

We compare our method to dropout (Srivastava et al., 2014), a popular regularization method that
can improve generalization in neural networks. Like our approach, dropout produces a single model
at the end of training. We also consider its Monte Carlo variant (MC-dropout; Gal & Ghahramani,
2016), and the recently proposed BatchEnsemble (Wen et al., 2020). This method generates an
ensemble using rank-1 matrices as described in Section 2.2. Predictions still need to be averaged
over multiple models, but this averaging step can be parallelized in modern hardware.

Additionally, we report single-seed results obtained with an ensemble of K independently-trained
models (a deep ensemble, Lakshminarayanan et al., 2017). Deep ensembles provide a strong base-
line, at the expense of large computational and memory costs. Therefore, they are not directly
comparable to the other methods considered here, and serve the purpose of an upper baseline.

Table 1: CIFAR-10, WRN 28-10. Mean ±
std. over 5 seeds. Late-phase BatchNorm (LPBN).

Model Test acc. (%)

Base (SGD) 96.16±0.12

Dropout (SGD) 96.02±0.06

MC-Dropout (SGD) 96.03±0.09

BatchEnsemble (SGD) 96.19±0.18

Late-phase (SGD) 96.46±0.15

Base (SWA) 96.48±0.04

Late-phase (SWA) 96.81±0.07

Deep ensemble (SGD) 96.91
Deep ensemble (LPBN, SGD) 96.99

By contrast, augmenting the architectures con-
sidered here with late-phase weights results
in negligible additional costs during learn-
ing (with the exception of hypernetworks,
which require additional tensor products) and
none during testing. In principle, a set of
independently-trained models yielded by our
algorithm can therefore even be used as the
basis of a deep ensemble, when the mem-
ory and compute budget allows for one. We
present proof-of-concept experiments explor-
ing this option.

Throughout our CIFAR-10/100 experiments we
set K = 10, use a fast base gradient scale fac-
tor of γθ = 1, and set our late-phase initializa-
tion hyperparameters to T0 = 120 (measured
henceforth in epochs; T0 = 100 for SWA) and do not use initialization noise, σ0 = 0. These
hyperparameters were tuned manually once on CIFAR-100 and then kept fixed unless otherwise

5

Published as a conference paper at ICLR 2021

noted. We use standard learning rate scheduling, optimized for SGD and SWA on the base model
(cf. Appendices A and B). Last-layer weights are included by default in our late-phase weight set Φ.

CIFAR-10. For CIFAR-10 we focus on the WRN architecture, a high-performance residual net-
work (WRN; Zagoruyko & Komodakis, 2016) which features BatchNorm layers. Taking advantage
of this we implement a late-phase weight model consisting of BatchNorm shift and scale parameters.

All algorithms achieve a training error close to zero (cf. Appendix B). The resulting predictive
accuracies are shown in Table 1. We find that augmenting the WRN 28-10 (a standard WRN config-
uration) with BatchNorm late-phase weights leads to a systematic improvement in generalization,
reducing the gap with a deep ensemble of K = 10 models. Initializing our ensemble from the
onset (T0 = 0) fails to meet the performance of the base model, reaching only 95.68 ± 0.23%
(cf. Appendix 12).

We also investigate initializing a late-phase (full) deep ensemble at T0 = 120. This results in a test
set accuracy of 96.32±0.09%, in between late-phase BatchNorm weights and no late-phase weights
at all. This speaks to the data-efficiency of our low-dimensional late-phase ensembles which can be
trained with as little data as a single model, besides being memory efficient.

In addition, we consider a larger instance of the WRN model (the WRN 28-14), trained for 300
epochs using cutout data augmentation (DeVries & Taylor, 2017), as well as a small convolution
neural network without skip connections, cf. Table 3. When late-phase weights are employed in
combination with SWA, we observe significant accuracy gains on the WRN 28-14. Thus, our late-
phase weights impose an implicit regularization that is effective on models with many weights.
Similarly, we observe larger gains when training on a random subset of CIFAR-10 with only 104

examples (cf. Appendix B).

Table 2: Mean CIFAR-100 test set accuracy (%) ± std. over 5 seeds, WRN 28-10. Different late-
phase weight augmentations are compared to the base architecture and to an upper bound consisting
of an ensemble of models. Deep ens. stands for deep ensemble, LPBN for late-phase BatchNorm.

Base BatchNorm Hypernetwork Deep ens. Deep ens. (LPBN)

SGD 81.35±0.16 82.87±0.22 81.55±0.31 84.09 84.69
SWA 82.46±0.09 83.06±0.08 82.01±0.17 83.62 -

CIFAR-100. We next turn to the CIFAR-100 dataset, which has 10-fold less examples per class
and more room for improvements. We study the WRN 28-10, as well as the larger WRN 28-14 vari-
ant (using cutout data augmentation as before) and a PyramidNet (Han et al., 2017) with ShakeDrop
regularization (Yamada et al., 2019). The latter are trained for 300 epochs.

Predictive accuracy is again highest for our neural networks with late-phase weights, trained with
SGD or SWA, cf. Table 2. We observe that the simplest BatchNorm late-phase weight model reaches
the highest accuracy, with late-phase hypernetwork weight embeddings yielding essentially no im-
provements. Once again, the setting of T0 = 0 (onset ensemble learning) fails to match base model
performance, finishing at 80.26± 0.42% test accuracy. As for CIFAR-10, a late-phase full deep en-
semble only reached intermediate improvements, at 82.17±0.15% test accuracy. Furthermore, a gap
towards deep ensembles persists. This suggests that covering different modes of the loss (Fort et al.,
2020) can provide benefits that cannot be captured by ensembling models in a small neighborhood.

Table 3: Additional architectures, CIFAR-10 (C10) and
CIFAR-100 (C100). Mean test set acc. ± std. over 3
seeds (%). Late-phase BatchNorm weights.

Base Late-phase

C10 ConvNet (SGD) 77.41±0.23 77.94±0.37

C10 WRN 28-14 (SWA) 96.75±0.05 97.45±0.10

C100 WRN 28-14 (SWA) 84.01±0.29 85.00±0.25

C100 PyramidNet (SGD) 84.04±0.28 84.35±0.14

The final averaged solutions found
with late-phase weights are strong base
models to build a deep ensemble of
independently-trained networks. The
fact that our algorithm yields a single
model allows further pushing the upper
bound of what can be achieved when un-
restricted full ensemble training is possi-
ble. This improvement comes at no cost
compared to a standard deep ensemble.

6

Published as a conference paper at ICLR 2021

We train additional neural network architectures restricting our experiments to the BatchNorm late-
phase weight model, which can be readily implemented without architectural modifications. Again,
learning with late-phase weights yields a consistent improvement over the baseline, cf. Table 3.

120 160 200
Training epoch

60

70

85

Te
st

ac
c.

(%
)

K=1
K=10

Figure 2: WRN 28-10, CIFAR-100,
constant learning rate SWA (activated
at epoch 150). With BatchNorm late-
phase weights (K=10, initialized at
epoch 120) and without (K=1). Mean
test acc. (%) ± std. over 5 seeds.

Notably, SWA can achieve high predictive accuracy with
a large constant learning rate (Izmailov et al., 2018). We
reproduce these previous results and show that they im-
prove when learning with late-phase weights, cf. Fig. 2.
Substantial progress is made both when entering the late-
phase learning period and when activating SWA.

Out-of-distribution (OOD) generalization. Deep en-
sembles are an effective technique for improving the
behavior of neural networks in OOD data (Lakshmi-
narayanan et al., 2017). We ask whether our implicit en-
sembles modeled during late-phase learning could confer
a similar advantage to our final averaged model.

Additionally, we evaluate the performance of a late-phase
weight ensemble obtained with large initialization noise
σ0 = 0.5 (at T0 = 100), skipping the final weight averaging step. This requires integrating predic-
tions over K late-phase ensemble members at test time, y(x) = 1

K

∑K
k=1 y(x,wk). Unlike standard

deep ensembles, training this ensemble is still as cheap as training a single model.

Table 4: CIFAR-100, WRN-28-10, uncertainty representation results. Mean ± std. over 5 seeds
(except deep ensembles). This first group of methods yield a single model; the second group requires
test-time averaging over models while training as efficiently as K=1; the last group are full deep
ensembles which require training K=10 models from scratch (Deep ens.). We report in-distribution
test set acc. (%) and negative log-likelihood (NLL), and in-distribution vs. out-of-distribution (OOD)
discrimination performance (average AUROC over four OOD datasets, see main text).

Test acc. (%) Test NLL OOD

Base (SGD) 81.35±0.16 0.7400±0.0034 0.8015±0.0189

Dropout (Mean) (SGD) 81.31±0.20 0.7736±0.0025 0.8022±0.0299

Late-phase Hypernetwork (SGD) 81.55±0.32 0.8327±0.0066 0.8209±0.00168

Late-phase BatchNorm (SGD) 82.87±0.14 0.7542±0.0076 0.8360±0.0118

MC-Dropout (SGD) 81.55±0.11 0.7105±0.0026 0.8225±0.0488

SWAG (SWA) 82.12±0.03 0.6189±0.0036 0.8283±0.0274

BatchEnsemble (SGD) 81.25±0.10 0.7691±0.0048 0.8285±0.0189

Late-phase BatchNorm (SGD, non-averaged) 82.71±0.10 0.7512±0.0069 0.8624±0.0094

Deep ens. (SGD) 84.09 0.5942 0.8312
Deep ens. (Late-phase BatchNorm, SGD) 84.69 0.6712 0.8575

We draw novel images from a collection of datasets (SVHN, Netzer et al. (2011); LSUN, Yu et al.
(2015); Tiny ImageNet; CIFAR-10) and present them to a WRN 28-10 trained on CIFAR-100. We
use Shannon’s entropy (Cover & Thomas, 2006) to measure the uncertainty in the output predictive
distribution, which should be high for OOD and low for CIFAR-100 data. Overall performance is
summarized using the area under the receiver operating characteristics curve (AUROC), averaged
over all datasets. We report per-dataset results in Appendix B (Table 16) alongside experiments
measuring robustness to corruptions in the input data (Hendrycks & Dietterich, 2019).

We compare our results to alternative methods with strong uncertainty representation: MC-dropout
(Gal & Ghahramani, 2016), SWA-Gaussian (SWAG; Maddox et al., 2019) and BatchEnsemble (Wen
et al., 2020). All three methods require integrating predictions over an ensemble at test time.

We find that learning with late-phase weights increases prediction uncertainty in OOD data, allowing
for a significantly better separation between in and out-of-distribution examples, cf. Table 4. The

7

Published as a conference paper at ICLR 2021

OOD performance of late-phase BatchNorm weights compares favorably to the alternative methods
including deep ensembles, even when using a single weight-averaged model, while maintaining high
predictive accuracy. Remarkably, keeping the late-phase BatchNorm ensemble at test time allows
reaching the highest OOD performance throughout. Paired with non-zero initialization noise σ0 > 0
(cf. Appendix B), this method results in the best OOD performance.

0.00 0.05 0.10
σz

5

10

15

δL
/L

K=1
K=10

Figure 3: Flatness score. Mean score ±
std. over 5 seeds, WRN 28-10, CIFAR-
100, SGD, with and without Batch-
Norm late-phase weights. Slower in-
crease with σz is better.

Despite our improved performance on both predictive ac-
curacy (with late-phase BatchNorm) and OOD discrim-
ination (with late-phase BatchNorm and hypernetwork
embeddings), the test set negative log-likelihood (NLL;
often used to assess predictive uncertainty, Guo et al.,
2017) is surprisingly slightly worse for our solutions.
This is aligned with the finding that SWA does not al-
ways significantly reduce NLL, even though predictive
accuracy increases (Maddox et al., 2019).

Flatness. Why do our networks generalize better? Ap-
proximate Bayesian inference suggests that flat min-
ima generalize better than sharp minima (Hochreiter &
Schmidhuber, 1997a; MacKay, 1992). Due to symme-
tries that are present in neural networks there is some debate surrounding this argument (Dinh et al.,
2017), but current evidence seems favorable (Jiang et al., 2020).

We hypothesize that sharing base weights over K late-phase weight configurations can implicitly
lead to flatter solutions. To investigate whether our algorithm finds flatter minima, we examine
a simple flatness score that correlates well with generalization (Pittorino et al., 2020; Jiang et al.,
2020). Concretely, we add multiplicative Gaussian noise zi ∼ N (0, w2

i σ
2
z) to each weight wi and

then measure the change in the loss δL = Ez[L(w + z) − L(w)]. Our final weight configurations
are indeed in flatter regions of weight space according to this measure: δL increases more slowly
with σz for the WRN 28-10 models that are learned with BatchNorm late-phase weights, Fig. 3.

3.3 IMAGENET EXPERIMENTS

Table 5: Validation set acc. (%) on ImageNet. Mean ±
std. over 5 seeds. BatchNorm late-phase and baseline
trained for 20 epochs with SGD.

Initial Base Late-phase

ResNet-50 76.15 76.62±0.06 76.87±0.03

ResNet-152 78.31 78.37±0.01 78.77±0.01

DenseNet-161 77.65 78.17±0.01 78.31±0.01

To investigate whether our gains trans-
late to large-scale learning problems, we
train deep residual networks (He et al.,
2016) and a densely-connected convolu-
tional network (DenseNet; Huang et al.,
2018) on the ImageNet dataset (Rus-
sakovsky et al., 2015). We start from pre-
trained models and contrast BatchNorm
late-phase weight learning to fine-tuning
with SGD for 20 epochs, with γθ = 1/K
and σ0 = 0 (cf. Appendix A). For simplicity we do not include last-layer weights in Φ.

Fine-tuning with late-phase weights improves the final top-1 validation accuracy of this pretrained
model significantly with only minor training, as seen in Table 5. These results serve as a proof-of-
concept that existing models can be further improved, taking our late-phase initialization T0 as the
time the previous experimenter stopped training. In Appendix B, we present additional CIFAR-100
experiments where we apply late-phase learning starting at the suboptimal end-of-training T0 = 200,
to mimic the pretrained condition.

3.4 LSTM LANGUAGE MODELING EXPERIMENTS

Finally, we conduct experiments on the language modeling benchmark enwik8. To show that the
benefits of late-phase weights extend to recurrent neural networks, we augment a standard LSTM
with multiplicative late-phase weights consisting of rank-1 matrices (Wen et al., 2020, cf. Sec-
tion 2.2).

8

Published as a conference paper at ICLR 2021

Table 6: enwik8 results measured in bits per
character (BPC), LSTM with 500 units. Mean
over 5 seeds, with std. σ < 0.01 for all results.

Model Train Test Test (SWA)

Base 1.570 1.695 1.626
Base + Rank1 1.524 1.663 1.616
Late-phase Rank1 1.522 1.633 1.615

Overfitting is a major issue when training
LSTMs. Recent studies have shown that by
leveraging vast amounts of computation and
smart black-box optimizers (Golovin et al.,
2017), properly regularized LSTMs can outper-
form previously published state-of-the-art mod-
els (Melis et al., 2017). To avoid this issue, we
train models where the number of parameters
(∼1.56M) is drastically smaller than the num-
ber of training data points (90M), such that we
do not observe any overfitting. Thus, we do not apply any regularization. This helps minimize the
effects of hyperparameter tuning. Our only hyperparameter is the learning rate (0.001 here), which
we tune via grid search to maximize base model performance.

We train our LSTM with 500 units for 50 epochs, optimizing every weight with Adam (Kingma
& Ba, 2015). We apply a multiplicative rank-1 matrix elementwise to the recurrent weight matrix.
Interestingly, merely adding the multiplicative parameters to the LSTM (Base) accelerates training
and leads to better training and test set performance (measured in bits per character, BPC) with no
additional changes to the optimizer (Base + Rank1, Table 6). Further improvements can be achieved
with our late-phase weights. We generate K = 10 late-phase weight components at epoch 30 with
σ0 = 0.35 and set γθ = 1. Additionally, we find that SWA (starting at epoch 40) substantially
improves all scores, with smaller gains on the models with multiplicative weights.

4 RELATED WORK

Our late-phase weights define an ensemble with the special property that every model shares the
same base weights. Such parameter sharing is an established method for ensembling neural networks
while controlling for the memory and time complexity of learning (Lee et al., 2015). In designing
our late-phase weight models, we draw directly from recent work which proposes sharing a set of
base parameters over K rank-1 matrices (Wen et al., 2020) or K heads (Lee et al., 2015).

The elastic averaging SGD algorithm learns K neural networks in parallel, coupled through an
additional central model (EASGD; Zhang et al., 2015). Like our algorithm, EASGD often yields
solutions which generalize better than those found by standard SGD (Pittorino et al., 2020). Our late-
phase weight learning is intimately related to EASGD, as we optimize the performance of a central
model through an ensemble. However, thanks to parameter sharing and late-phase ensembling, we
do not find the need to introduce a coupling term to our loss function. Additionally, as we replicate a
small number of parameters only, the complexity of our algorithm is greatly reduced in comparison
to EASGD, which requires learning a full ensemble of models.

Splitting the weights of a neural network into a set of fast and slow components which vary on dif-
ferent timescales is a classic technique (Hinton & Plaut, 1987; Schmidhuber, 1992) that has proven
useful in a wide range of problems. This list includes applications to few-shot learning (Munkhdalai
& Yu, 2017; Nichol et al., 2018; Perez et al., 2018; Zintgraf et al., 2019; Flennerhag et al., 2020),
optimization (Zhang et al., 2019b; Chaudhari et al., 2019), improving recurrent neural networks (Ba
et al., 2016; Ha et al., 2017), and continual learning with biologically-realistic synapses (Kapla-
nis et al., 2018; Leimer et al., 2019), to name a few. Although there is no explicit separation of
timescales in our weight components, the update accumulation in θ as φk varies (cf. Algorithm 1)
suggests interpreting the base θ as slow weights and the late-phase Φ as fast weights.

This accumulation is reminiscent of a recent meta-learning algorithm (Zintgraf et al., 2019), which
first separates parameters into task-shared and task-specific, and then differentiates through a se-
quence of accumulated updates performed over the task-specific parameters (Finn et al., 2017).
Continuing with the fast-slow weight analogy, our averaging over fast weights at the end of learn-
ing (Eq. 1) could be thought of as a synaptic consolidation step which integrates the fast weight
components onto a slow, persistent form of memory.

9

Published as a conference paper at ICLR 2021

5 CONCLUSION

We proposed to replicate and learn in parallel a subset of weights in a late phase of neural net-
work learning. These late-phase weights define an ensemble of models which share every other
weight. We studied convolutional neural networks, a common recurrent neural network, and a sim-
ple quadratic problem. Surprisingly, across these cases, we found that a small number of appropri-
ately chosen such weights can quickly guide SGD towards solutions that generalize well. Most of
our experiments relied on BatchNorm late-phase weights, making our method easy to implement in
a wide range of existing models, including pretrained ones. We expect future work to uncover new
effective late-phase weight models.

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science Foundation (B.F.G. CRSII5-173721 and
315230 189251), ETH project funding (B.F.G. ETH-20 19-01), the Human Frontiers Science Pro-
gram (RGY0072/2019) and funding from the Swiss Data Science Center (B.F.G, C17-18, J.v.O.
P18-03). João Sacramento was supported by an Ambizione grant (PZ00P3 186027) from the Swiss
National Science Foundation. We would like to thank Nicolas Zucchet, Simon Schug, Xu He,
Ângelo Cardoso and Angelika Steger for feedback, Mark van Rossum for discussions on flat min-
ima, Simone Surace for his detailed feedback on Appendix C, and Asier Mujika for providing very
useful starter code for our LSTM experiments.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: a system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementa-
tion, 2016.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: implicit
acceleration by overparameterization. In International Conference on Machine Learning, 2018.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast
weights to attend to the recent past. In Advances in Neural Information Processing Systems 29.
2016.

Carlo Baldassi, Fabrizio Pittorino, and Riccardo Zecchina. Shaping the learning landscape in neural
networks around wide flat minima. Proceedings of the National Academy of Sciences, 117(1):
161–170, January 2020.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

Kevin S. Brown and James P. Sethna. Statistical mechanical approaches to models with many poorly
known parameters. Physical Review E, 68(2):021904, August 2003.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks. In Information Theory and Applications Workshop
(ITA). IEEE, 2018.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradi-
ent descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019
(12):124018, 2019.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, USA,
2006.

10

Published as a conference paper at ICLR 2021

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, November 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019–1028, August 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, July 2017.

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. In International Conference on Learning
Representations, 2020.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: a loss landscape perspec-
tive. arXiv preprint arXiv:1912.02757, June 2020.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. Training batchnorm and only batchnorm:
on the expressive power of random features in CNNs. arXiv preprint arXiv:2003.00152, June
2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059,
June 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of DNNs. In Advances in Neural Information
Processing Systems 31. 2018.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and D. Sculley.
Google vizier: a service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, 2017.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on
Learning Representations, 2017.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Conference
on Computer Vision and Pattern Recognition, 2017. arXiv: 1610.02915.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: surpassing
human-level performance on ImageNet classification. arXiv preprint arXiv:1502.01852, February
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In International Conference on Learning Representations, 2019.

Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In Proceedings
of the ninth annual conference of the Cognitive Science Society, pp. 177–186, 1987.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, January
1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997b.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: train 1, get M for free. In International Conference on Learning Represen-
tations, March 2017.

11

Published as a conference paper at ICLR 2021

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993, January 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Kiyosi Itô. On stochastic differential equations. Number 4. American Mathematical Soc., 1951.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Uncertainty in Artificial
Intelligence, 2018.

Siddhant M. Jayakumar, Wojciech M. Czarnecki, Jacob Menick, Jonathan Schwarz, Jack Rae, Si-
mon Osindero, Yee Whye Teh, Tim Harley, and Razvan Pascanu. Multiplicative interactions and
where to find them. In International Conference on Learning Representations, 2020.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-
tic generalization measures and where to find them. In International Conference on Learning
Representations, 2020.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the
Fokker–Planck equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998. Publisher:
SIAM.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Continual reinforcement learning with
complex synapses. In International Conference on Machine Learning, June 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Andrey Nikolaevich Kolmogorov. On analytical methods in probability theory. Math. Ann, 104:
415–458, 1931.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems 30. 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Process-
ing Systems 31. 2018.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, and Dhruv Batra. Why
M heads are better than one: training a diverse ensemble of deep networks. arXiv preprint:
arXiv:1511.06314, November 2015.

Pascal Leimer, Michael Herzog, and Walter Senn. Synaptic weight decay with selective consolida-
tion enables fast learning without catastrophic forgetting. bioRxiv, pp. 613265, April 2019.

Guan-Horng Liu and Evangelos A Theodorou. Deep learning theory review: An optimal control
and dynamical systems perspective. arXiv preprint arXiv:1908.10920, 2019.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Com-
putation, 4(3):448–472, 1992.

12

Published as a conference paper at ICLR 2021

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for Bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems 32. 2019.

James Martens. Second-order optimization for neural networks. PhD thesis, University of Toronto,
2016.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589, November 2017.

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for the
price of 1: parameter-efficient multi-task and transfer learning. In International Conference on
Learning Representations, 2019.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference on Machine
Learning, June 2017.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course. Springer US, 2004.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, October 2018.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film:
visual reasoning with a general conditioning layer. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 3942–3951, 2018.

Fabrizio Pittorino, Carlo Lucibello, Christoph Feinauer, Enrico M. Malatesta, Gabriele Perugini,
Carlo Baldassi, Matteo Negri, Elizaveta Demyanenko, and Riccardo Zecchina. Entropic gradient
descent algorithms and wide flat minima. arXiv preprint arXiv:2006.07897, June 2020.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems 30, pp. 506–516. 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei
Li. ImageNet large scale visual recognition challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the Hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, May 2018.

Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through parameter sharing.
In International Conference on Learning Representations, 2019.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International Con-
ference on Machine Learning, pp. 343–351, 2013.

Jürgen Schmidhuber. Learning to control fast-weight memories: an alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, January 1992.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F. Grewe. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.

13

Published as a conference paper at ICLR 2021

Joshua J. Waterfall, Fergal P. Casey, Ryan N. Gutenkunst, Kevin S. Brown, Christopher R. My-
ers, Piet W. Brouwer, Veit Elser, and James P. Sethna. Sloppy-model universality class and the
Vandermonde matrix. Physical Review Letters, 97(15):150601, October 2006.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
International Conference on Machine Learning, 2011.

Yeming Wen, Dustin Tran, and Jimmy Ba. BatchEnsemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations, 2020.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, March
2018.

Sho Yaida. Fluctuation-dissipation relations for stochastic gradient descent. arXiv preprint
arXiv:1810.00004, 2018.

Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop regularization
for deep residual learning. IEEE Access, 7:186126–186136, 2019.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of
a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference, 2016.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? Insights
from a noisy quadratic model. In Advances in Neural Information Processing Systems 32, pp.
8196–8207. 2019a.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead Optimizer: k steps
forward, 1 step back. In Advances in Neural Information Processing Systems 32, pp. 9597–9608.
2019b.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging SGD.
In Advances in Neural information Processing Systems, pp. 685–693, 2015.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: its behavior of escaping from sharp minima and regularization effects. arXiv
preprint arXiv:1803.00195, 2018.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702,
May 2019.

A ADDITIONAL IMPLEMENTATION DETAILS

Hypernetwork model. The base neural network architecture we use when parameterizing our
weights using a hypernetwork is identical to the WRN 28-10 described by Zagoruyko & Komodakis
(2016). Our hypernetwork implementation closely follows Savarese & Maire (2019), who studied
high-performing linear hypernetwork architectures for WRNs. We do not use dropout or biases in the
convolutional layers. The parameters of every convolutional layer are hypernetwork-generated, with
one hypernetwork per layer group (Table 7). The remaining parameters, namely those of BatchNorm
units and final linear layer weights, are non-hypernetwork-generated.

Following Savarese & Maire (2019) we turn off weight decay for the model embeddings and initial-
ize these parameters with a random pseudo-orthogonal initialization over layers. The hypernetwork
parameters are initialized using a standard Kaiming initialization (He et al., 2015).

14

Published as a conference paper at ICLR 2021

Table 7: Specification of the hypernetwork used for each convolutional layer of the WRN, indexed
by its depth in the network. A depth marked by * refers to the residual connection spanning across
the specified layers. The characteristics of each layer is described in the format input-channels ×
[kernel-size] × output-channels under Conv-layer. Layers within the same group are generated by
the same hypernetwork. Each hypernetwork has a unique parameter tensor of shape Hnet-PS, which,
when multiplied by a layer and weight embedding of shape Emb-PS and reshaped appropriately,
generates the primary network parameter of shape Base-PS.

Depth Conv-layer Base-PS Layer group Hnet-PS Emb-PS

1 3×[3×3]×16 [16, 3, 3, 3] 0 [16, 3, 3, 3, 10] [10, 1]

2 16×[3×3]×160 [160, 3, 3, 16] 1 [160, 3, 3, 16, 7] [7, 1]
3 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
4 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
5 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
6 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
7 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
8 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]
9 160×[3×3]×160 [160, 3, 3, 160] 2 [160, 3, 3, 80, 14] [14, 2]

10 160×[3×3]×320 [320, 3, 3, 160] 3 [320, 3, 3, 160, 14] [14, 1]
11 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
12 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
13 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
14 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
15 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
16 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]
17 320×[3×3]×320 [320, 3, 3, 320] 3 [320, 3, 3, 160, 14] [14, 2]

18 320×[3×3]×640 [640, 3, 3, 320] 4 [640, 3, 3, 320, 14] [14, 1]
19 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
20 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
21 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
22 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
23 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
24 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]
25 640×[3×3]×640 [640, 3, 3, 640] 4 [640, 3, 3, 320, 14] [14, 2]

2→4* 16×[1×1]×160 [160,1, 1, 16] 5 [160, 1, 1, 16, 7] [7, 1]
10→12* 160×[1×1]×320 [320, 1, 1, 160] 6 [320, 1, 1, 160, 7] [7, 1]
18→20* 320×[1×1]×640 [640, 1, 1, 320] 7 [640, 1, 1, 320, 7] [7, 1]

15

Published as a conference paper at ICLR 2021

Small ConvNet model. We train a slight modification of the classic LeNet-5 (Lecun et al., 1998)
for 200 epochs on CIFAR-10. Both convolutional and fully-connected layers are left unchanged, but
we use rectified linear units on the hidden layers. Furthermore, after each such activation, Batch-
Norm units are inserted. We optimize the model with SGD and use late-phase BatchNorm weights,
with T0 = 50 and σ0 = 0.5. For simplicity of implementation, we do not include the last linear
layer in the late-phase weight set Φ.

Optimization. We optimize the cross-entropy loss, using either SGD with Nesterov momentum
(0.9) or SGD with Nesterov momentum (0.9) wrapped inside SWA. LSTM: Our LSTM experiments
use Adam with constant learning rate 0.001, batch size 128, and no regularizers such as weight decay
or dropout. WRN-28-10: For our WRN experiments on the CIFAR datasets we use the learning
rate annealing schedule of Izmailov et al. (2018), according to which an initial learning rate of 0.1
is linearly decreased at every epoch from the end of the 100th epoch (80th for SWA) to the end of
the 180th epoch (144th for SWA; SWA is activated at epoch 160), when a final value of 0.001 (0.05
for SWA) is reached. Our optimizers use Nesterov momentum (set to 0.9), a batch size of 128 and
weight decay (set to 0.0005). On CIFAR-100 (SGD) we set the weight decay of late-phase weights
proportional to the ensemble size, 0.0005K. WRN-28-14: The WRN 28-14 models are trained
for 300 epochs on CIFAR-100. The learning rate is initialized at 0.1, then annealed to 0.05 from
the 80th epoch to the 240th epoch. SWA is activated at epoch 160. All other hyperparameters are
identical to those of WRN 28-10. ConvNet: Same as for the WRN 28-10 model, except that we
anneal the learning rate until the 160th epoch.

Algorithm 2: Stochastic weight averaging
(SWA)
Require: Base weights θ, dataset D,

hyperparameter η, loss L
Require: Training iteration t
M← Sample minibatch from D
∆θ ← ∇θ L(M, θ)
θ ← U(θ, η,∆θ)
θSWA ← (t θSWA + θ)/(t+ 1)
t← t+ 1

Algorithm 3: SGD with Nesterov mo-
mentum
Require: Base weights θ, dataset D,

learning rate η, momentum ρ,
loss L

M← Sample minibatch from D
∆θ ← ∇θ L(M, θ + ρ ν)
ν ← ρν − η∆θ
θ ← θ + ν

Figure 4: Pseudocode for a single parameter update for SWA and SGD with Nesterov momentum,
the two main optimizers used in our experiments. These are either used standalone, or as Uθ and
Uφ in Algorithm 1 (main text). U in Algorithm 2 (SWA) serves as a placeholder for a parameter
update rule such as SGD (with Nesterov momentum) or Adam. Training iteration t is counted from
the activation of SWA in Algorithm 1.

Batch normalization units. Whenever we use SWA, we follow Izmailov et al. (2018) and per-
form a full pass over the training set to re-estimate BatchNorm unit statistics before testing. This
correction is required since the online BatchNorm mean and variance estimates track the activations
produced with the raw (non-averaged) weights during training, while the averaged solution is the
one used when predicting at test time.

Data augmentation and preprocessing. On both CIFAR and ImageNet datasets, all images are
normalized channelwise by subtracting the mean and dividing by the standard deviation; both statis-
tics are computed on the training dataset. The same transformation is then applied when testing,
including to OOD data. Following a standard procedure (e.g., Zagoruyko & Komodakis, 2016;
He et al., 2016) we augment our training datasets using random crops (with a 4-pixel padding for
CIFAR) and random horizontal flips. The ImageNet training dataset is augmented with random hor-
izontal flips, as well as random cropping of size 224, while a centered cropping of size 224 was used
on the test set. Our OOD datasets are resized to fit whenever necessary; we used the resized images
made available by Lee et al. (2018).

ImageNet experiments. The pretrained model for the ImageNet experiment is obtained from
torchvision’s models subpackage. We fine-tune the model for 20 additional epochs on ImageNet.

16

Published as a conference paper at ICLR 2021

Algorithm 4: Late-phase learning
Require: Base weights θ, late-phase weight set Φ, dataset D, gradient scale

factor γθ, learning rate η, ensemble size K, initialization noise
σ0, initialization time T0, number of training iterations T , loss L

Initialization: K̂ ← 0, s← 0, t← 1
while t ≤ T do

if t = T0 then
// generate late-phase weights
for 1 ≤ k ≤ K do

sample ε ∼ N (0, 1)
φk ← φ0 + σ0

‖φ0‖ε

// set range for specialists training
K̂ ← K
s← 1

for s ≤ k ≤ K̂ do
Mk ← Sample minibatch from D
∆θk ← ∇θ L(Mk, θ, φk)
φk ← φk − η∇φk

L(Mk, θ, φk)
t← t+ 1

θ ← θ − γθ η
∑K
k=1 ∆θk

Figure 5: Complete pseudocode for an entire training session using late-phase weights. To avoid
notational clutter T , T0 and t are measured in numbers of minibatches consumed. In the paper, we
measure T0 and T in epochs. For simplicity, we present the case where Uφ and Uθ are set to plain
SGD (without momentum) and φk of dimension 1. Other optimization algorithms (e.g., Algorithm
2 or Algorithm 3) can be used to replace Uφ and Uθ , as described in Algorithm 1. Note that we
increase t inside the inner loop. This highlights (i) that every specialist parameter is trained only on
1/K data samples after t > T0 compared to θ, and (ii) that we count every minibatch drawn from
the data to compare fairly to algorithms without an inner loop.

We use a multistep learning rate scheduler, starting at 0.001 then decreasing at the 10th epoch to
0.0001. We use SGD with momentum (set to 0.9) and weight decay (set to 0.0001) as our optimizer,
with a batch size of 256. We use σ0 = 0 and K = 10 for our late-phase model.

Table 8: CIFAR-100 test set accuracy (%)
depending on different values ofK for WRN
28-10, SGD. Mean ± std. over 5 seeds.

K Test acc. (%)

1 81.35±0.16

5 82.44±0.22

10 82.87±0.22

15 83.01±0.27

20 82.86±0.29

Code forks. Our hypernetwork implementation
was inspired by the code made publicly available by
Savarese & Maire (2019). Our implementation of
SWA was adapted from the code accompanying the
work of Izmailov et al. (2018), now available on the
torchcontrib Python package. The SWAG method
was evaluated directly using the code provided by
the authors (Maddox et al., 2019). We used the same
base WRN model as Maddox et al. (2019), which
can be retrieved from https://github.com/
meliketoy/wide-resnet.pytorch.

LSTM All experiments are conducted using the
Tensorflow Python framework (Abadi et al., 2016).
All base weights are initialized uniform in [−0.01, 0.01] whereas the initial rank-1 matrix weights
are centered around 1 i.e. [1−0.01, 1+0.01] to mitigate strong difference in initialization compared
to the base model. We use the Tensorflow default values (β1 = 0.9, β2 = 0., ε = 10−8) for the
Adam optimiser. We perform a grid search over σ0 ∈ [0, 0.5] (in steps of size 0.05) for our LSTM
experiments (fixing K = 10 and varying T0 ∈ {0, 30}) and obtain the values reported in the main
text, T0 = 30 and σ0 = 0.35.

17

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch

Published as a conference paper at ICLR 2021

0 40 80 120 160 200
T0

75

80

A
cc

ur
ac

y
(%

)

Test set
Base Test set

AUROC
Base AUROC 0.775

0.800

0.825

0.850

AU
R

O
C

Figure 6: Sensitivity analysis of T0. Mean AUROC score (OOD) and test set accuracy for different
values of T0 for WRN 28-10, CIFAR-100, SGD, with BatchNorm late-phase weights.

B ADDITIONAL EXPERIMENTS

Table 9: Applying late-phase weights to a pretrained WRN 28-10, CIFAR-100, SGD. Mean ±
std. over 5 seeds.

Model Test acc. (%)

Initial 81.35±0.16

Base 81.47±0.14

Late-phase BatchNorm 82.02±0.12

Late-phase BatchNorm, frozen base weight 81.50±0.20

Pretrained CIFAR-100. We apply our method to a standard WRN 28-10 pretrained on CIFAR-
100 (i.e., we set T0 = 200) and train for an additional 20 epochs. At the beginning of the fine-
tuning, the learning rate is reset to 0.01, then annealed linearly to 0.001 for 10 epochs. It is then held
constant for the remainder of the fine-tuning process. We observe that augmenting with BatchNorm
late-phase weights yields an improved predictive accuracy compared to additional fine-tuning with
SGD (Base), cf. Table 9. Both methods improve over the initial baseline (Initial), including the base
model. This can be explained by the optimization restart and the accompanying spike in the learning
rate introduced by our scheduler (Loshchilov & Hutter, 2017).

Importantly, we find that fine-tuning only BatchNorm late-phase weights while keeping all other
weights fixed does not even match the Base control. Together with the finding that the optimal late-
phase weight initialization time is at T ∗0 = 120 (when learning for 200 epochs), this result speaks to
the importance of jointly optimizing both base and late-phase weights through our Algorithm 1.

Gradient accumulation control. Here we show that the improved generalization we report in the
main text is not merely due to gradient accumulation over larger batches. We take our base WRN 28-
10 model (without late-phase weights) and start accumulating gradients over K = 10 minibatches
at T0 = 120, experimenting both with γθ = 1/K and γθ = 1. The models are trained with
SGD using otherwise standard optimization settings. Both controls fail to improve (even match) the
performance of the base model trained without any gradient accumulation.

Sensitivity to T0, K and σ0. We present a hyperparameter exploration on the CIFAR-100 dataset
using BatchNorm late-phase weights in Tables 8, 11 and 12. We find that our algorithm is largely

Table 10: Gradient accumulation control, CIFAR-100, WRN 28-10, SGD. Mean± std. over 5 seeds.

Model Test acc. (%)

Base (SGD) 81.35±0.16

Base + gradient accumulation (γθ = 1) 80.76±0.26

Base + gradient accumulation (γθ = 1/K) 80.34±0.28

18

Published as a conference paper at ICLR 2021

Table 11: CIFAR-100 test set accuracy (%) depending on different values of σ0 for WRN 28-10
SGD with late-phase BatchNorm weights (LPBN). Mean ± std. over 5 seeds.

CIFAR-100 CIFAR-100 CIFAR-100
(LPBN) (LPBN, non-averaged) (LPBN, pretrained)

σ0 Test acc. (%) OOD Test acc. (%) OOD Test acc. (%) OOD

0 82.87±0.22 0.833±0.005 83.20±0.20 0.854±0.017 81.70±0.19 0.803 ±0.017

0.25 82.77±0.19 0.836±0.012 82.68±0.32 0.861±0.013 82.02±0.12 0.808 ±0.017

0.5 82.78±0.18 0.837±0.011 82.71±0.10 0.862±0.009 81.15 ±0.29 0.797 ±0.007

0.75 82.41±0.20 0.839±0.012 82.43±0.15 0.855±0.013 - -
1.0 81.52±1.09 0.840±0.017 82.38±0.15 0.848±0.014 - -

robust to σ0 when T0 can be set to its optimal value, which is at 60% of training. See also Figure
6 for a visualisation of the same data, specifically the change in mean AUROC score and test set
accuracy when changing T0. This result holds also on CIFAR-10, cf. Table 12. When starting from a
pretrained condition (T0 = 200), finite σ0 leads to a significant improvement in performance, cf. Ta-
ble 11. We therefore report results obtained with σ0 = 0 for every CIFAR and ImageNet experiment
in the main text. The exception to this is the non-averaged (ensemble) late-phase BatchNorm model
presented in Table 4, which was optimized for best OOD performance (corresponding to σ0 = 0.5).

Table 13: Performance of a WRN 28-10 on CIFAR-100 with different dropout probability p. For
MC-dropout we average over 10 different samples. Mean ± std. over 5 seeds.

p Test acc. (%) Test NLL OOD

Dropout 0.1 81.46±0.13 0.7476±0.0059 0.8031±0.0064

Dropout 0.2 81.31±0.20 0.7736±0.0025 0.8022±0.0299

Dropout 0.3 80.93±0.19 0.8342±0.0098 0.7833±0.0239

MC-Dropout 0.1 81.51±0.14 0.7197±0.0054 0.8149±0.0087

MC-Dropout 0.2 81.55±0.11 0.7105±0.0026 0.8225±0.0488

MC-Dropout 0.3 81.36±0.31 0.7150±0.0069 0.8040±0.0135

Table 12: CIFAR-10 and CIFAR-100 test
set accuracy (%) depending on different late
phase timing T0 for WRN 28-10, SGD. Mean
± std. over 5 seeds.

T0 CIFAR-10 CIFAR-100

0 95.68±0.23 74.38±0.71

40 96.34±0.08 79.69±0.11

60 96.42±0.10 80.53±0.21

80 96.50±0.11 81.72±0.18

100 96.45±0.08 82.48±0.21

120 96.48±0.20 82.87±0.22

140 96.26±0.17 82.53±0.21

160 96.23±0.11 81.41±0.31

180 96.25±0.23 81.43±0.27

200 96.16±0.12 81.35±0.16

Related work. Here we provide details for the
training setups of alternative methods we compare
against in the main text. For the results reported
for dropout (Srivastava et al., 2014) and MC-dropout
(Gal & Ghahramani, 2016), we simply train a WRN
28-10 on CIFAR-100 with the exact same configu-
ration as for our base model, see above, but include
dropout layers as usually done (Zagoruyko & Ko-
modakis, 2016) after the first convolution in each
residual block. For a scan over the dropout prob-
ability p in this setup, see Table 13. p = 0.2 is re-
ported in the main text - for CIFAR-100 and CIFAR-
10. Note that p was only tuned for CIFAR-100.

For the reported results of BatchEnsemble (Wen
et al., 2020), we simply execute the code pro-
vided by the authors at https://github.com/
google/uncertainty-baselineswith their
fine-tuned configuration for CIFAR-10/100. No-
tably, the authors use a different setup than followed in this manuscript. First, the WRN 28-10
is trained for 250 epochs (we allow for this increased budget exceptionally for BatchEnsemble),
with a multi-step learning rate annealing at [80, 160, 180] with a learning rate decay factor of 0.2.
Second, a weight decay of 3× 10−4 is used.

19

https://github.com/google/uncertainty-baselines
https://github.com/google/uncertainty-baselines

Published as a conference paper at ICLR 2021

Table 14: Final training set loss on CIFAR datasets, WRN 28-10, SGD. Mean ± std. over 5 seeds.

Training loss

CIFAR-10 – base 0.0010±0.0000

CIFAR-10 – late-phase BatchNorm 0.0019±0.0001

CIFAR-100 – base 0.0024±0.0001

CIFAR-100 – late-phase BatchNorm 0.0267±0.0004

Table 15: Performance of models trained on a reduced CIFAR-10 training set and evaluated on the
full CIFAR-10 test set. Mean ± std. over 5 seeds.

Model Test acc. (%)

Base (SGD) 88.98±0.18

Late-phase BN (SGD) 89.58±0.19

For the results reported for SWAG (Maddox et al., 2019), we use the code provided by the authors
at https://github.com/wjmaddox/swa_gaussian, and the proposed fine-tuned config-
uration which coincides with the configuration used to obtain all CIFAR-100 results reported in this
manuscript, except for BatchEnsembles (see above). We report results for SWAG after training on
200 epochs for fair comparison.

Training losses. We provide the final achieved training losses for the base model and when aug-
menting it with BatchNorm late-phase weights on Table 14, for both CIFAR-10 and CIFAR-100. Us-
ing a fast gradient accumulation scale factor of γθ = 1 leads to a higher training loss on CIFAR-100
than that of the standard model, but we found this setting crucial to achieve the largest improvement
on test set generalization.

CIFAR-10 with a reduced training set. Here we evaluate the performance of our method on a
reduced training set of CIFAR-10. We randomly pick 10000 training data out of the 50000 available,
and use this new set to train different models. After training, the models are evaluated on the standard
CIFAR-10 test set. Results are shown in Table 15.

Detailed OOD results and mean corruption error (mCE) experiments. In order to test the
robustness of late-phase weights against input data corruption, we used the corruptions and
dataset proposed by Hendrycks & Dietterich (2019), freely available at https://github.com/
hendrycks/robustness. The authors propose 15 noise sources such as random Gaussian
noise, spatter or contrast changes to deform the input data and report the model test set accuracy on
the corrupted dataset under 5 severity levels (noise strengths). For each source noise, its corruption
error is computed by averaging the prediction error over the severity levels. The average of the cor-
ruption error of all 15 noises gives us the Mean Corruption Error (mCE). See Table 16 for the mCE
computed on the corrupted CIFAR-100 dataset.

Training run time. Here we compare the training run time of our method with the baseline. The
result was computed in Python 3.7, using the automatic differentiation and GPU acceleration pack-
age PyTorch (version 1.4.0). We used the standard datasets (including training and test splits) as
provided by the torchvision package unless stated otherwise. We used a single NVIDIA GeForce
2080 Ti GPU for the experiment. Results are presented in Table 17.

C THEORETICAL ANALYSIS OF THE NOISY QUADRATIC PROBLEM

In this section, we consider a noisy quadratic problem (NQP) that can be theoretically analyzed and
that captures important characteristics of the stochasticity of a minibatch-based optimizer (Schaul
et al., 2013; Martens, 2016; Wu et al., 2018; Zhang et al., 2019a;b). The NQP does a second-order
Taylor expansion of the loss function around the optimum w∗ and models the minibatch noise as

20

https://github.com/wjmaddox/swa_gaussian
https://github.com/hendrycks/robustness
https://github.com/hendrycks/robustness

Published as a conference paper at ICLR 2021

Table 16: OOD performance measured by the AUROC, and robustness measured by the Mean
Corruption Error (mCE). We train the models on CIFAR-100 and attempt to discriminate test set
images from novel ones drawn from the SVHN, LSUN, Tiny ImageNet (TIN) and CIFAR-10 dataset.
The mCE value is the average across 75 different corruptions from the CIFAR-100-C dataset. LPBN
and LP HNET stand respectively for late-phase BatchNorm and late-phase hypernetwork.

SVHN LSUN TIN CIFAR-10 mCE

Base 0.814±0.024 0.798±0.036 0.776±0.038 0.818±0.003 47.84±0.41

LPBN 0.831±0.021 0.862±0.017 0.838±0.023 0.814±0.002 45.59±0.25

LPBN (non-avg.) 0.877±0.008 0.883±0.015 0.863±0.023 0.827±0.002 46.21±0.29

LP HNET 0.815±0.022 0.842±0.023 0.816±0.027 0.811±0.002 47.84±0.42

Dropout (Mean) 0.792±0.093 0.807±0.040 0.788±0.044 0.822±0.003 48.97±0.33

MC-Dropout 0.806±0.082 0.842±0.046 0.817±0.041 0.824±0.003 48.09±0.36

SWAG 0.824±0.012 0.839±0.054 0.835±0.041 0.816±0.004 -
BatchEnsemble 0.848±0.020 0.828±0.018 0.820±0.030 0.829±0.019 -

Deep ens. 0.839 0.836 0.812 0.839 44.21
Deep ens. (LPBN) 0.855 0.884 0.856 0.834 43.15

Table 17: Training time in seconds and hours on CIFAR-10 for 200 epochs on a single NVIDIA
GeForce 2080 Ti GPU.

Model seconds hours

Base (SGD) 17714 ∼ 4.92
Late-phase BN (SGD) 17772 ∼ 4.94

a random translation ε of the optimum, while keeping the curvature H the same. This gives us the
following minibatch loss:

L̂ =
1

2
(w −w∗ +

1√
B
ε)TH(w −w∗ +

1√
B
ε) (4)

with ε ∼ N (0,Σ) and B the minibatch size. Note that we use boldface notation for vectors in this
analysis for notational clarity. The NQP can be seen as an approximation of the loss function in the
final phase of learning, where we initialize the late-phase ensemble. Despite its apparent simplicity,
it remains a challenging optimization problem that has important similarities with stochastic mini-
batch training in deep neural networks (Schaul et al., 2013; Martens, 2016; Wu et al., 2018; Zhang
et al., 2019a;b). For the simple loss landscape of the NQP, there are three main strategies to improve
the expected loss after convergence: (i) increase the mini-batch size B (Zhang et al., 2019a), (ii)
use more members K in an ensemble (c.f. Section C.3 and (iii) decrease the learning rate η (Schaul
et al., 2013; Martens, 2016; Wu et al., 2018; Zhang et al., 2019a;b). The late-phase weights training
combines the two first strategies in a non-trivial manner by (i) averaging over the base-weights
gradients for all ensemble members and (ii) averaging the late-phase weights in parameter space to
obtain a mean-model. The goal of this theoretical analysis is to show that the expected loss after
convergence scales inversely with the number of late-phase ensemble members K, which indicates
that the non-trivial combination of the two strategies is successful.

To model the multiplicative weight interaction between late-phase weights and base weights, we use
linear hypernetworks of arbitrary dimension. The linear hypernetworks parameterize the weights
as w = θe, with θ ∈ Rn×d the hypernetwork parameters and e ∈ Rd the embedding vector.
The embedding vectors e are used as late-phase weights (φ in the main manuscript) to create a late-
phase ensemble withK members, while using a shared hypernetwork θ as base-weights: wk = θek.
Ultimately, we are interested in the expected risk of the the mean model at steady state:

E[L(ss)] = Eρss [
1

2
(w̄ −w∗)TH(w̄ −w∗)] (5)

with w̄ , 1
K

∑
k θek = θ 1

K

∑
k ek , θē and ρss the steady-state distribution of the parameters.

Note that we cannot put w∗ = 0 without loss of generality, because the overparameterization of the
hypernetworks makes the optimization problem nonlinear.

21

Published as a conference paper at ICLR 2021

We start with investigating the discrete time dynamics induced by late-phase learning, after which we
derive the corresponding continuous time dynamics to be able to use the rich stochastic dynamical
systems literature for analyzing the resulting nonlinear stochastic dynamical system.

C.1 DISCRETE TIME DYNAMICS

As we want to investigate the multiplicative interaction between the shared and late-phase parame-
ters, we substitute w = θe into equation 4, instead of computing a new Taylor approximation in the
hypernetwork parameter space. Let us take t as the index for the outer loop (updating θ) and k the
index for the ensemble member. Then we have the following stochastic minibatch loss:

L̂(t,k) =
1

2
(θ(t)e

(t)
k −w∗ +

1√
B
ε(t,k))TH(θ(t)e

(t)
k −w∗ +

1√
B
ε(t,k)), (6)

which gives rise to the following parameter updates using late-phase learning with learning rate η
and minibatch size B:

θ(t+1) = θ(t) − η 1

K

∑
k

H(θ(t)e
(t)
k −w∗)e

(t)T
k +

η√
B

1

K

∑
k

Hε(t,k)e
(t)T
k (7)

e
(t+1)
k = e

(t)
k − ηθ

(t)TH(θ(t)e
(t)
k −w∗) +

η√
B
θ(t)THε(t,k) (8)

The above discrete time dynamics are nonlinear, giving rise to a non-Gaussian parameter distribution
ρ. Hence, it is not possible to characterize these dynamics by the moment-propagating equations of
the first and second moment as done in Zhang et al. (2019a;b); Schaul et al. (2013) and Wu et al.
(2018), without having full access of the parameter distribution ρ. Furthermore, because of the
hypernetwork parameterization, we cannot decouple the system of equations, even if H and Σ are
diagonal, which is a common approach in the literature. Therefore, we investigate the corresponding
continuous time dynamics, such that we can use the rich literature on stochastic dynamical systems.

C.2 CONTINUOUS TIME DYNAMICS

First, let us define some compact notations for the various parameters.

et , [e
(t)T
1 . . . e

(t)T
K]T (9)

Et , [e
(t)
1 . . . e

(t)
K] (10)

θt , vec(θt) (11)

xt , [θTt , e
T
t]T (12)

εt , [ε(t,1)T . . . ε(t,K)T]T , (13)
(14)

where vec(θ) concatenates the columns of θ in a vector. Then the discrete time dynamics (equation 7
and equation 8) can be rewritten as:

xt+1 = xt − ηF (xt) +
η√
B
G(xt)εt (15)

with

F (xt) ,

[
1
K

∑
k

(
e
(t)
k ⊗H

)(
θte

(t)
k −w∗

)(
I ⊗ (θTt Hθt)

)
et − 1⊗ (θTt Hw∗)

]
(16)

G(xt ,

[
1
KEt ⊗H
I ⊗ (θTt H)

]
(17)

(18)

with ⊗ the Kronecker product, I an identity matrix of the appropriate size and 1 a vector full of
ones of the appropriate size. As a linear transformation of Gaussian variables remains a Gaussian
variable, we can rewrite eq. equation 15 as follows:

xt+1 = xt − ηF (xt) +
η√
B
D(xt)ζt (19)

22

Published as a conference paper at ICLR 2021

with D(xt) ,
(
G(xt)(I ⊗ Σ)G(xt)

T
)0.5

and ζ ∼ N (0, I). Following Liu & Theodorou (2019)
and Chaudhari & Soatto (2018), the corresponding continuous-time dynamics are:

dxt = −F (xt)dt+
√

2β−1D(xt)dWt (20)

with Wt Brownian motion and β , 2B
η the inverse temperature. Note that

√
η is incorporated

in the noise covariance, such that the correct limit to stochastic continuous time dynamics can be
made (Liu & Theodorou, 2019; Chaudhari & Soatto, 2018; but see Yaida, 2018). For computing the
expected loss E[Lt] of the mean model, we need to have the stochastic dynamics of this loss. Using
the Itô lemma (Itô, 1951; Liu & Theodorou, 2019), which is an extension of the chain rule in the
ordinary calculus to the stochastic setting, we get

dL(xt) =
[
−∇L(xt)

TF (xt) +
1

2
Tr
[
D̃HLD̃

]]
dt+

[
∇L(xt)

T D̃
]
dWt (21)

with D̃ ,
√

2β−1D(xt) for notational simplicity and HL the Hessian of L w.r.t. xt. As we are
interested in the expected risk (equation 5), we can take the expectation of equation 21 over the
parameter distribution ρt(x) to get the dynamics of the first moment of the loss (also known as the
backward Kolmogorov equation (Kolmogorov, 1931)):

dEρt
[
L(xt)

]
= Eρt

[
−∇L(xt)

TF (xt) +
1

2
Tr
[
D̃2HL

]]
dt (22)

In order to obtain the dynamics of the parameter distribution, the Fokker-Planck equation can be
used (Jordan et al., 1998). However, due to the nonlinear nature of the stochastic dynamical system,
the distribution is non-Gaussian and it is not possible (to our best knowledge) to obtain an analytical
solution for equation 22. Nevertheless, we can still gain important insights by investigating the
steady-state of equation 22. After convergence, the left-hand side (LHS) is expected to be zero.
Hence, we have that

Eρss
[
∇L(xss)

TF (xss)
]

=
1

2
Eρss

[
Tr[D̃2HL]

]
(23)

The remainder of our arguments is structured as follows. First, we will show that the left-hand-side
(LHS) of equation 23 is the expectation of an approximation of a weighted norm of the gradient∇L,
after which we will connect this norm to the loss L of the mean model. Second, we will investigate
the RHS to show that the late-phase learning with ensembles lowers the expected risk of the NQP
at steady-state. For clarity and ease of notation, we will drop the ss subscripts. The gradient of the
mean-model loss is given by:

∇L(x) =

[(
ē⊗H

)(
θē−w∗

)
1
K1⊗

(
θTHθē−w∗

)] (24)

By introducing ∆ek , ek − ē and using that
∑
k ∆ek = 0, we can rewrite F (x) as:

F (x) =

[
I 0
0 KI

]
∇L(x) +

[
(Γ⊗H)θ(

I ⊗ (θTHθ)
)
∆e

]
(25)

with Γ , 1
K

∑
k ∆ek∆eTk and ∆eT , [eT1 ...e

T
K]. We see that F is an approximation of the gradient

∇Lwhere the lower block of∇L is scaled byK. Importantly, the lower block of the second element
of the RHS of equation 25 (the approximation error) will disappear when taking the inner product
with ∇L and the upper block is not influenced by the number of ensemble members K, which we
will need later. The LHS of equation 23 can now be rewritten as:

Eρss
[
∇L(x)TF (x)

]
= Eρss

[
∇L(x)TM∇L(x)

]
+ Eρss

[
Tr[HθΓH(θē−w∗)ēT]

]
(26)

with M the diagonal matrix of equation 25 (first element of the RHS). The first term of the RHS
of equation 26 is the expectation of a weighted squared norm of ∇L, while the second term is an
approximation error due to the covariance of ∆ek. Hence, we see that the LHS of equation 23 can
be seen as an approximation of a weighted norm of the gradient ∇L. By investigating the term
∇L(x)TM∇L(x) further, we show that it is closely connected to the loss L.

∇L(x)TM∇L(x) = (w̄ −w∗)T (ēT ēH2 +HθθTH)(w̄ −w∗) (27)

23

Published as a conference paper at ICLR 2021

When comparing to the mean-model loss L = (w̄ − w∗)TH(w̄ − w∗) we see that the two are
tightly connected, both using a weighted distance measure between w̄ and w∗, with only a different
weighting. Taken everything together, we see that we can take the LHS of equation 23 (and hence
also the RHS) as a rough proxy for the expected risk under the steady-state distribution (equation 5),
which will be important to investigate the influence of the amount of ensemble members on the
expected risk. Zhu et al. (2018) highlighted this trace quantitiy in equation 23 as a measurement
of the escaping efficiency out of poor minima. However, we assume that we are in the final valley
of convergence (emphasized by this convex NQP), so now this interpretation does not hold and the
quantity should be considered as a proxy measurement of the width of the steady-state parameter
distribution around the minimum. The trace quantity has HL and D(xss)

2 as main elements, which
we structure in block matrices below (for clarity and ease of notation, we drop the subscripts ss).

HL =

[
(ēēT)⊗H 1

K1
T ⊗QT

1
K1⊗Q

1
K21⊗ θTHθ

]
(28)

D(x)2 = G(I ⊗ Σ)GT =

[
1
K2 (EET)⊗ (HΣH) 1

KE ⊗ (HΣHθ)
1
KE

T ⊗ (θTHΣH) I ⊗ (θTHΣHθ)

]
(29)

with 1 a matrix or vector of the appropriate size full of ones, ē , 1/K
∑
k ek and the rows of

Q ∈ Rd×nd given by:

Qi,: , θT
(
(ēδTi + δiē

T)⊗H
)
− δTi ⊗ (w∗TH), (30)

with δi the i-th column of an appropriately sized identity matrix. After some intermediate calcula-
tions and rearranging of terms, we reach the following expression for the RHS of equation 23:

1

2
Eρss

[
Tr[D̃2HL]

]
=

1

Kβ

(
Eρss

[
Tr
[
Ẽ2ēēT

]]
Tr
[
HΣH2

]
+ Eρss

[
Tr
[
ē⊗ (HΣHθQ)

]
+ ...

...Tr
[(
ēT ⊗ (θTHΣH)

)
QT)

]
+ Tr

[
θTHΣHθθTHθ

]])
, (31)

with Ẽ2 , 1
K

∑
k eke

T
k = 1

KEE
T Note that everything between the big brackets in the RHS is

independent of K in expectation. Hence, we see that the RHS of equation 23 scales inversely by
K, exactly as the case for full ensembles (see Section C.3). Importantly, the approximation errors
in equation 25 are independent of K, hence, the found scaling of 1

K in equation 31 translates to a
scaling of 1

K of the expected risk of the NQP, following the above argumentation. Hence, we see
that the non-trivial combination of (i) averaging over the base-weights gradients for all ensemble
members and (ii) averaging the late-phase weights ek in parameter space to obtain a mean-model,
succeeds in scaling the expected loss after convergence inversely by K.

C.3 NQP WITH FULL ENSEMBLES

As a comparison for the above theoretical results, we also analyze the NQP that uses an ensemble of
K full weight configurations wk to get a mean model w̄, instead of shared weights θ and ensemble-
member-specific weights φk. For the case of linear models, the averaging in weight space to obtain
a mean model is equivalent to the averaging of the predictions over the ensemble, which is conven-
tionally done using ensembles. Without loss of generality, we can take w∗ = 0 (corresponding with
a simple reparameterization of w). Using equation 4, this results in the following parameter updates
for the ensemble members:

w
(t+1)
k = (I − ηH)w

(t)
k +

η√
B
Hε(t,k) (32)

The mean model w̄ , 1
K

∑
kwk has the following corresponding discrete dynamics:

w̄(t+1) = (I − ηH)w̄(t) +
η

K
√
B
H
∑
k

ε(t,k) (33)

Exact moment propagating equations. As this is a discrete linear system with Gaussian noise,
the resulting parameter distributions will also be linear and can be fully characterized by the mean

24

Published as a conference paper at ICLR 2021

and covariance of the parameters. Taking the expectation and variance of equation 33 results in:

E
[
w̄(t+1)

]
= (I − ηH)E

[
w̄(t)

]
(34)

C
[
w̄(t+1)

]
= (I − ηH)C

[
w̄(t)

]
(I − ηH) +

η2

KB
HΣH (35)

with Σ the covariance matrix of ε. For an appropriate η, the above equations converge to the follow-
ing fixed points at steady-state:

Eρss
[
w̄
]

= 0 (36)

vec
(
Cρss

[
w̄
])

=
η2

KB

(
I − (I − ηH)⊗ (I − ηH)

)−1
vec
(
HΣH) (37)

We see that the steady-state covariance of w̄ and hence of the risk L scales with 1
K (Eρss [L] =

Eρss [w̄THw̄] = Tr
[
HCρss [w̄]

]
). The expected risk Eρss [L] obtained with computationally expen-

sive full ensembles can be seen as a lower limit that we try to reach with the economical ensembles
of shared weights θ and late-phase weights φk. Note that for the NQP, increasing the batchsizeB has
a similar influence as increasing the number of ensemble membersK, as can be seen in equation 37.

Continuous time stochastic dynamics. We can also do a similar continuous time analysis as
Section C.2 for the case of full ensembles, to better relate it to the results of the late-phase learning
with shared parameters. Following the same approach, we get the following expression for the trace
term:

1

2
Eρss

[
Tr[D̃2HL]

]
= Tr

[1

β

(
I ⊗ (HΣH)

) 1

K2

(
1⊗H

)]
(38)

=
1

Kβ
Tr
[
HΣH2] (39)

When comparing to equation 31, we see that the economical ensembles with shared parameters
reach the same scaling with 1

K as a result of ensembling, however, some extra terms that vanish
asymptotically for big K appear as a result of the interplay between shared and late-phase parame-
ters.

Experimental details for Fig. 1. We take the model w = θ φ (i.e., K = 1) as our baseline,
since this overparameterization could already result in accelerated learning (Arora et al., 2018). Our
parameters are randomly initialized and scaled such that w̄ has a fixed distance to w∗ of 1. Since the
NQP mimics a late phase of learning we set T0 = 0. We study a problem of dimension n = 100 and
train the model with gradient descent (without momentum).

To validate the theoretical results, we show in Fig. 1 that the steady-state reached by our method
scales inversely with K, similarly to an ensemble of independently-trained models. We run ex-
periments with K ∈ [2, 5, 10, 15, 20, 25] and train every configuration for 2 × 107 iterations until
convergence. We average over the last 104 weight updates and over 5 different random seeds.

25

	1 Introduction
	2 Methods and models
	2.1 Learning with late-phase weights
	2.2 Late-phase weight models

	3 Results
	3.1 Noisy quadratic problem analysis
	3.2 CIFAR-10/100 experiments
	3.3 ImageNet experiments
	3.4 LSTM language modeling experiments

	4 Related work
	5 Conclusion
	A Additional implementation details
	B Additional experiments
	C Theoretical analysis of the noisy quadratic problem
	C.1 Discrete Time Dynamics
	C.2 Continuous Time Dynamics
	C.3 NQP with full ensembles

