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In a recent issue of Nature Methods, Platisa et al. present an approach for long-term, in vivo population
voltage imaging with single spike resolution across a local population of 100 neurons.1 Key to this step for-
ward was the combination of a customized high-speed two-photon microscope with an optimized, positive-
going, genetically encoded voltage indicator and a tailored machine learning denoising algorithm.
To date, the two most common technol-

ogies for monitoring neuronal population

activity in the intact brain are electro-

physiological recordings and calcium im-

aging. Multi-electrode recording based

on silicon probes, e.g., NeuroPixels,

enables monitoring of brain-wide

neuronal spiking activity.2 NeuroPixels

allow high-speed recordings from large

numbers of neurons through 4 mm or

more of deep brain tissue. Depending

on the location and animal species, a sin-

gle probe can record between 200 and

400 neurons simultaneously along its

shaft.2 However, electrophysiological re-

cordings generally lack the ability to

define the genetic identity of individual

cells. Also, longitudinal tracking of neural

signals over weeks and months is chal-

lenging, and in some cases, the geome-

try of the silicon shaft limits recordings

to a fraction of the population in the brain

area of interest.

In contrast, in vivo two-photon calcium

imaging provides dense recordings in

deep brain areas that are optically acces-

sible,3 in some cases recording themajor-

ity of neurons in a given volume. Multi-

photon imaging techniques also allow

the linking of neuronal activity to cellular

morphology, subcellular compartments,

or the genetic identities of neurons. More-

over, genetic calcium indicators have

vastly improved over the last decade in

terms of their sensitivity and kinetics,

thanks to iterative protein engineering by

groups such as the GENIE Project at Ja-

nelia Research Campus. For example,

GENIE’s recently released jGCaMP8f

variant exhibits a 37% DF/F change
This is an o
upon a single spike in cultured neurons

and an 87 ms half-decay time.

However, calcium ions are only indi-

rectly related to action potential firing,4 as

several other factors modulate intracellular

calcium. This problem can be overcome

using indicators that directly report mem-

brane voltage. Utilizing such voltage indi-

cators in combination with two-photon im-

aging offers the same genetic specificity

and dense population monitoring capabil-

ities and promises more precise timing

and counting of spikes. In addition, voltage

imaging can detect subthreshold voltage

signals (e.g., excitatory postsynaptic po-

tentials [EPSPs], neural oscillations) in

somatic and dendritic compartments.

Two-photon voltage imaging of large

neuronal populations thus represents a

major direction forward inmodern systems

neuroscience as it could enable a more

comprehensive understanding of neuronal

dynamics.

However, both in vivo calcium and

voltage imaging using two-photon micro-

scopy are facing a fundamental challenge:

to monitor neuronal activity, one must re-

cord each individual image pixel with a suf-

ficiently high signal to noise ratio (SNR) and

optical resolution. Naturally, voltage imag-

ing of spiking signals requires frame rates

of several hundreds to thousands of Hz.

Asa result, the photonflux often falls below

a single fluorescence photon per image

pixel. Insuch low-light conditions individual

frames are highly affected by photon shot

noise and it is often impossible to assign

functional signals to small structures.

Although structures can be visualized

by averaging frames, this reduces the
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sampling rate to the point one can no

longer resolve neuronal spiking. Raising

excitation power increases the sample

brightness, but also rapidly increases

photobleaching and damage.5 More

practical approaches are to develop

brighter voltage indicators or to improve

microscope performance. Recent work

on high-speed two-photon microscopy6,7

or voltage indicators7 has demonstrated

such improvements.

Another orthogonal approach capital-

izes on the information shared among

nearby pixels in space and time to better

extract information from shot-noise-

limited recordings. In multi-photon imag-

ing, nearby pixels within the same frame

or temporally adjacent frames offer extra

bits of information about the state of a

given cell. Although existing methods for

extracting signals from fluorescence re-

cordings take multiple pixels and time

points into account, these methods are

composed of sequential steps that are

each affected by noise. Computer vision

methods can learn the complex spatio-

temporal structure of a given recording

to directly estimate the brightness of

each pixel from its context in the raw

recording. Key to these methods, like

DeepInterpolation,8 is the recognition

that shot-noise dominated frames provide

a noisy yet unbiased estimate of ground

truth signals. Therefore, these frames

can be used to train deep neuronal net-

works to reconstruct denoised versions

of multi-photon movies directly from the

raw data. The reconstructed movies can

then be used by traditional segmentation

algorithms to extract signals.
s 3, June 26, 2023 ª 2023 The Author(s). 1
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Figure 1. Comparison of in vivo imaging techniques in terms of number of neurons and

recording speed onto a 2D space (number of imaged neurons vs. sampling rate)
Square markers represent published data. Clouds represent hypothetical interpolation between the re-
ported data points. Underlined labels refer to techniques that were specifically used for voltage imaging.
Adapted from Lecoq et al.10
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The recent study, Platisa, et al. is special

in that, for the first time, it effectively inte-

grates several of the above approaches to

achieve in vivo two-photonvoltage imaging

across a large population of individual neu-

rons over elongated periods of time.1 First,

Platisa et al. modified ASAP3, an existing

voltage sensor,7 to report voltage changes

withpositivefluorescencechanges instead

of negative ones. Although the sign of sig-

nals has little effect on their detectability,

positive-going voltage indicators exhibit

dimmer fluorescence at rest, which can

reducephotobleaching9 andphototoxicity.

Further, a dimmer baseline fluorescence

reduces shot noise due to optical crosstalk

from other labeled cells. The newly pre-

sented voltage indicator, SpikeyGi2,

brightens by approximately 13% DF/F per

detected putative action potential. Voltage

indicators are under rapid development

andprecise in vivovalidation ischallenging,

but these recordings compare favorably to

ASAP3. Platisa et al. measured a �7.9%

DF/F change per event with ASAP3 in the

same in vivo condition. This result is on

par with a �9% DF/F change reported by

the original ASAP3 publication for in vivo

events.

Second, Platisa et al. customized a

two-photon imaging scheme based
2 Cell Reports Methods 3, June 26, 2023
on spatiotemporal multiplexing10 to reach

a 1 kHz frame rate over a 400 3 400 mm

field of view (FOV). Their FOV was divided

into eight bands scanned by four pairs of

multiplexed beams that in some cases

contained >100 neurons. The reported

optical resolution of 0.9 mm (lateral) and

4.4 mm (axial) is sufficient to resolve indi-

vidual neurons and even subcellular

structures. Though in principle the ULoVE

imaging approach could record from a

larger population of neurons, especially if

combined with self-supervised denoising,

the original publication of ULoVE only re-

ported a few neurons recorded at a given

time in vivo.7 The combination of tech-

niques introduced by Platisa et al. there-

fore provides a significant increase in the

number of simultaneously recorded neu-

rons with voltage imaging (see Figure 1

for a comparison of neuronal yield with

other existing techniques).

A notable limitation of the presented

approach is the remaining crosstalk of

up to 10% between imaging channels.

This is a known challenge associated

with increasingly popular multiplexing

techniques that can have subtle con-

sequences on population analyses.11

In this particular instantiation, temporal

crosstalk between consecutive pixels in
time contributed less than 5% to the over-

all crosstalk of 10% that was dominated

by light scattering between nearby pixels

in space. For future iterations of voltage

imaging systems, we anticipate the

development of methods to minimize

this issue, for example by utilizing compu-

tational unmixing of temporally multi-

plexed recordings.

Last, Platisa, et al. adapted an image

denoising method like DeepInterpolation8

for voltage imaging to computationally

reconstruct pixel intensity values in low-

light conditions. Their denoising method,

DeepVID, reconstructs a center frame

from preceding and successive frames.

In previous iterations of self-supervised

denoising, the center frame served as a

training target but was excluded from

the input. Their modified algorithm intro-

duced a dropout layer to utilize this central

frame without causing excessive over-

fitting. This center frame is particularly

important for voltage imaging, as it

facilitates the reconstruction of fast,

brief events such as fluorescence spikes

generated from action potentials.

To date, most large-scale voltage imag-

ing approaches operate at the edge of our

technological capabilities. In line with

Platisa et al., we project that the next set

of technological advances in neurosci-

ence will be generated by integrating

several cutting-edge technologies. In

particular, we see the incorporation of

deep learning methods playing a crucial

role, whether it is to automatically

detect and extract neural signals or to

identify more potent sensors. Moreover,

modern neuroscience is increasingly built

upon foundational datasets acquired

using such complex and integrated

instruments. These datasets, similar to

brain-wide cell type characterization or

large-scale connectomics using electron

microscopy, have been greatly utilized

by the neuroscience community to create

a complex ecosystem of interdependent

publications. Acquiring such foundational

datasets only became possible due to

meticulous engineering integration and

scaling. We expect these integrative

efforts to continue,10 with more open-

source foundational datasets to be

accessible in the near future.

A significant repercussion of a compre-

hensive technological integration is

that imaging devices are increasingly
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becoming more intricate, making them

difficult to construct, transport, and repro-

duce. Consequently, staying abreast of

numerous technological advancements

is becoming an ever-greater challenge

for individual neuroscience laboratories.

Analogous to modern astronomical ob-

servatories that are built through national

efforts, we thus see the emergence of an

ecosystem of brain observatories12 as

beneficial to the neuroscience commu-

nity. Such an ecosystem would enable

the rapid transformation of newly

emerging, cutting-edge imaging tools

into practical neuroscience research sys-

tems. By eliminating technological bar-

riers that individual neuroscience labs

face, such an ecosystem could give wide-

spread access to a multitude of these

novel imaging tools. For the future, we

hope for more of such technological eco-

systems to emerge, which we consider

crucial for the field to advance our under-

standing of complex brain interactions

that arise from the concerted activity of

millions of neurons.
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