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A key driver of mammalian intelligence is the ability to represent incoming

sensory information across multiple abstraction levels. For example, in the visual

ventral stream, incoming signals are first represented as low-level edge filters

and then transformed into high-level object representations. Similar hierarchical

structures routinely emerge in artificial neural networks (ANNs) trained for object

recognition tasks, suggesting that similar structures may underlie biological neural

networks. However, the classical ANN training algorithm, backpropagation, is

considered biologically implausible, and thus alternative biologically plausible

training methods have been developed such as Equilibrium Propagation,

Deep Feedback Control, Supervised Predictive Coding, and Dendritic Error

Backpropagation. Several of those models propose that local errors are calculated

for each neuron by comparing apical and somatic activities. Notwithstanding,

from a neuroscience perspective, it is not clear how a neuron could compare

compartmental signals. Here, we propose a solution to this problem in that we

let the apical feedback signal change the postsynaptic firing rate and combine this

with a di�erential Hebbian update, a rate-based version of classical spiking time-

dependent plasticity (STDP). We prove that weight updates of this form minimize

two alternative loss functions that we prove to be equivalent to the error-based

losses used in machine learning: the inference latency and the amount of top-

down feedback necessary. Moreover, we show that the use of di�erential Hebbian

updates works similarly well in other feedback-based deep learning frameworks

such as Predictive Coding or Equilibrium Propagation. Finally, our work removes a

key requirement of biologically plausible models for deep learning and proposes a

learning mechanism that would explain how temporal Hebbian learning rules can

implement supervised hierarchical learning.

KEYWORDS

cortical hierarchies, deep learning, credit assignment, synaptic plasticity,

backpropagation, spiking time-dependent plasticity, target propagation, di�erential

Hebbian learning

1. Introduction

To survive in complex natural environments, humans and animals transform sensory

input into neuronal signals which in turn generate and modulate behavior. Learning of

such transformations often amounts to a non-trivial problem, since sensory inputs can be

very high-dimensional and complex. The complexity of sensory inputs requires hierarchical

information processing, which relies on multilayer networks. To form hierarchies, cortical

networks need to process these sensory signals and convey plasticity signals down to every

neuron in the hierarchy so that the output of the network (e.g., themotor output or behavior)

improves during learning. In deep learning, this is known as the credit assignment (CA)
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problem and it is commonly addressed by the error

backpropagation (BP) method. During BP learning, neurons

in the lower hierarchies change their afferent synapses by

integrating a backpropagated error signal. A neuron’s afferent

weight update is then calculated as the product of the presynaptic

activity and its non-local output error. However, several key

aspects of BP are still at odds with learning in biological neural

networks (Crick, 1989; Lillicrap et al., 2020). For example,

ANNs separate the processing or encoding of neuronal activity

signals from the weight update signals, they utilize distinct

phases and they implement an exact weight symmetry of

forward and feedback pathways. Moreover, plasticity in biological

synapses is local in space and time and tightly coupled to

the timing of the pre- and post-synaptic activity (Bi and Poo,

1998).

Attempting to address some of these implausibilities, recent

cortical-inspired ANN models leverage network dynamics to

directly couple changes in neuronal activity to weight updates

(Whittington and Bogacz, 2017; Sacramento et al., 2018). Those

models postulate multi-compartment pyramidal neurons with a

highly specialized dendritic morphology that use their apical

dendrite to integrate a feedback signal that modulates feedforward

plasticity (Figure 1A, left schematic). Althoughmulti-compartment

models agree with some biological constraints, such as the spatial

locality of learning rules and the fact that feedback not only

generates plasticity but also affects neuronal activity (Gilbert and Li,

2013), the apical “dendritic-error” learning approach still requires

tightly coordinated and highly specific error signaling circuits

(Whittington and Bogacz, 2017; Sacramento et al., 2018). To avoid

these highly specific error circuits, we recently developed a novel

class of cortical-inspired ANNs that utilizes the same dendritic-

error learning rule, but does not require highly specific error

circuits and is capable of online learning of all weights without

requiring separate forward and backward passes (Meulemans

et al., 2021a,b, 2022b). In this model, known as “Deep Feedback

Control” (DFC), we dynamically tailor the feedback to each

hidden neuron until the network output reaches the desired

target. The weight update of the feedforward pathway is then

calculated upon convergence as the difference in neural activities

when the effect of top-down apical feedback is fully taken into

account or not. Still, this model relies on the same dendritic-

error learning rule as its predecessors (Whittington and Bogacz,

2017; Sacramento et al., 2018), and it is unclear how a neuron

would be able to compare the activities of its basal and apical

compartments (Figure 1A, left scheme). In this work, we argue

that dendritic learning rules can be substituted by experimentally

validated temporal Hebbian learning rules (e.g., STDP) and

we use the DFC framework as an example of how a deep

network can learn with this mechanism. We argue that single-

compartment neurons, whose firing rate is strongly affected

by apical input, can use the difference between consecutive

instances of their activity as a learning signal (Figure 1B), as

opposed to comparing the changes in two different compartments.

Based on this dynamic change in the postsynaptic activity we

can thus encode the learning signal while being consistent

with experimentally observed learning rules such as STDP

(Figure 1C).

Spike-Timing Dependent Plasticity (STDP)

When using the term STDP, we here refer to the well-established

observation that the precise timing of pre- and post-synaptic spikes

significantly determines the sign and magnitude of synaptic plasticity

(Markram et al., 1997; Bi and Poo, 1998). In cortical pyramidal neurons, a

presynaptic spike that precedes a postsynaptic spike within a narrow time

window induces long-term potentiation (LTP) (Markram et al., 1997; Bi and

Poo, 1998; Nishiyama et al., 2000; Sjöström et al., 2001; Wittenberg and

Wang, 2006; Feldman, 2012); if the order is reversed it leads to long-term

depression (LTD). Using this classical STDP profile (Figure 1A), multiple

theoretical models were able to predict biological plasticity by assuming a

simple superposition of spike pairs (Gerstner et al., 1996; Kempter et al., 1999;

Abbott and Nelson, 2000; Song et al., 2000; van Rossum et al., 2000; Izhikevich

and Desai, 2003; Gütig, 2016).

2. Results

2.1. Single neuron supervised learning with
STDP

We first demonstrate how an STDP learning rule can be used to

train a single neuron on a linear classification task (Figure 2A). We

use a neuron with the sigmoid activation function, which gets both

feedforward basal inputs from two other neurons (A and B) and a

feedback apical input, resulting in the rate-based dynamics

v̇post(t) = −vpost(t)+ wA rA + wB rB + c(t)

rpost(t) = φ
(

vpost(t)
) (1)

where wA,wB are the synaptic strengths of the connection from

the input neurons to the output neuron, rA, rB are the firing rates

of neurons A, B, respectively, rpost(t) and vpost(t) are the output

firing rate and membrane potential at time t, and c(t) is the apical

feedback given to the output neuron. In our simple example, the

neuron can get two incoming stimuli, from neurons A and B, and

the apical feedback c(t) changes the output firing rate to be high

when B is presented and low when A is presented.

The firing rate variables are converted into spike trains with

an inhomogeneous Poisson process, where at every time step the

probability of spiking in each neuron is given by rpost(t), rA, rB,

respectively. These spike trains are then used to induce synaptic

weight changes by STDP (see Figure 2B).

We observe in Figure 2B that, as learning progresses, the

weights evolve to the expected values (high for wB, low for wA),

and that this changes the dynamics of rpost(t), causing rpost to start

closer to its target value and, thus, shortening the time and the

feedback required to produce the desired output (Figures 2C, D).

Such changes can be understood in terms of the following set of

equivalent loss functions that are minimized:

• The initial distance to the target activity can be computed

as the Mean Squared Error (MSE), denoted by L. This loss

is commonly used in the machine learning literature as a

standard performance measure.

• The feedback required to maintain or reach the target activity,

denoted by H. This loss is equivalent to the one presented in

previous works on using feedback to train neural networks
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FIGURE 1

Schematic comparison of learning rules in artificial and biological neural networks. (A) While recently proposed cortical-like ANNs utilize

dendritic-error learning rules to induce plasticity in basal synapses (left neuron), biologically observed plasticity rules are based on Hebbian-type

associative learning rules such as STDP (right neuron). (B) A temporal Hebbian update rule such as STDP directly relates to increasing or decreasing

postsynaptic activity. Thus, STDP learning is also often referred to as di�erential Hebbian learning (Xie and Seung, 1999; Zappacosta et al., 2018). (C)

Classical STDP profile showing ranges of 1 t that induce long-term potentiation (LTP) and long-term depression (LTD), as extracted from

experimental observations in neuroscience.

(Gilra and Gerstner, 2017; Meulemans et al., 2020) and relates

to the intuition from Predictive Coding that a trained ANN

minimizes the feedback needed to correctly process the input

(Rao and Ballard, 1999).

• The time delay to reach the target is denoted by T . This loss

function represents the amount of time a neuron takes to reach

its target value. This idea appears in previous works based

on STDP models (Masquelier et al., 2009; Vilimelis Aceituno

et al., 2020) and is also implicitly used in models for learning

in deep networks (Luczak et al., 2022).

To relate the three losses to temporal Hebbian learning, we re-

express the STDP update through its rate-based form, known as

the differential Hebbian (DH) learning rule (Xie and Seung, 1999;

Saudargiene et al., 2004; Bengio et al., 2017),

1w ∝

∫

rpre(t)ṙpost(t)dt, (2)

where 1w is the change in feedforward synaptic strength, rpre(t)

is the presynaptic activity and ṙpost(t) is the derivative of the

postsynaptic activity, which corresponds to the change in firing

probability. As we see in Figure 2E, the DH learning rule is

indeed similar to STDP, albeit with noise induced by the inherent

stochasticity of the Poisson neuron.

To understand how this rule relates to the three loss

functions mentioned above, we note that in the single neuron

example, the presynaptic firing rate is fixed, which simplifies the

previous rule to

1w ∝ rpre

∫

ṙpost(t)dt = rpre
[

rpost(T)− rpost(0)
]

, (3)

where rpost(T) is the postsynaptic activity after reaching the

target state. This corresponds to the dendritic-error learning rule

(Gilra and Gerstner, 2017; Sacramento et al., 2018; Meulemans

et al., 2020). The correlation of the weight updates for this

rule and STDP is shown in Figure 2E. In this single neuron

setting, it is clear that both the STDP and DH learning

mechanisms decrease the three loss functions: having an initial

activity that is closer to the target activity implies that the MSE

loss is lower at the beginning, and also that the change in

activity is smaller. Hence, it needs less feedback and the target

can be reached much faster (see Appendix, Section 2 for a

detailed explanation).

The next key question is whether we can use STDP and DH

learning in a similar manner for hierarchical credit assignment, i.e.,

for training multilayer neural networks.
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FIGURE 2

Single neuron supervision and STDP learning. (A) Single neuron supervision scheme. Throughout learning, we plot: (B) the evolution of the

presynaptic weights originating from neurons A and B; (C) the evolution of the neural dynamics; (D) the decreasing feedback, MSE loss, and

time-to-target; and (E) the correlation between DH and STDP weight updates.

2.2. Di�erential Hebbian can train
multilayer networks

To extend our results to multilayer neural networks, the

feedback must be received by the neurons in all layers.

To compute the appropriate feedback signals, we use

the framework of deep feedback control (DFC) from our

previous work (Meulemans et al., 2021a), which we detail here

for completeness.

In DFC, each neuron receives a feedforward basal input and an

apical feedback signal that is computed by a controller whose goal

is to achieve a target output response (Figure 3A). The neuronal

dynamics is described by

v̇post(t) = −vpost(t)+W{pre,post}rpre(t)
︸ ︷︷ ︸

feedforward

+Qpostc(t)
︸ ︷︷ ︸

feedback

, (4)
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FIGURE 3

Learning in hierarchical networks. (A) Schematic illustration of how the feedback can be used to train a deep network. We use the desired output

label and the output of the network to compute the feedback signals that are sent to the apical dendrites of the neurons. (B–D) Throughout the

training, the three losses (feedback, MSE loss, and time-to-target) decrease for the MNIST benchmark.

where the postsynaptic membrane potential vpost(t) at each

neuron is given by the presynaptic firing rate rpre(t), originating

from neurons in the previous layer, multiplied by the feedforward

synaptic weights W{pre,post}. In order to compute the target signal

for every neuron, DFC uses a global PI controller that affects all the

neurons in the network denoted by c(t),

c(t) = c
int(t)+ ke(t), τuċ

int(t) = e(t)α − c
int(t), (5)

where k is the proportional control constant, e(t) is the difference

between the target output activity and the network’s current output,

and α is the leak constant. The Q matrix contains the top-down

feedback weights that map the controller signal into each hidden

neuron and is pre-trained using local anti-Hebbian learning rules,

as done inMeulemans et al. (2021a), but then kept fixed throughout

the learning of the feedforward weights. We start with a random

Q weight matrix and add independent zero-mean noise into the

network,

v̇post(t) = −vpost(t)+W{pre,post}rpre(t)+ Qpostc(t)+ ǫ, (6)

where the fluctuations (ǫ) on every neuron propagate through the

feedforward network and affect the output layer, which in turn

creates fluctuations in c(t) that the controller then acts to eliminate

them. We then use an anti-Hebbian learning rule of the form

Q̇post(t) = −vpost(t)c(t)
T − βQpost, (7)

where parameter β controls the strength of the feedback weights.

As proven in Meulemans et al. (2021a), learning Q with this rule

ensures that the model does principled optimization, meaning it

converges in learning.

We test the DH learning with the DFC setting on MNIST

(LeCun, 1998), a widely accepted standard computer vision

benchmark that aims to classify 28 × 28 pixel grayscale images

of handwritten digits between 0 and 9. We show that DH with

feedback computed through the DFC framework can train a three-

hidden layer network (256 × 256 × 256) to match state-of-the-

art performances and compare our framework with BP as well

as the original DFC framework based on dendritic-error learning

(Table 1). We find that the testing classification error rates of BP,

DFC, and DH-DFC are on par with this benchmark.

To complement our analysis, we investigate the training loss

in DH-DFC. We note that the amount of feedback required to

reach the target decreases throughout the training (Figure 3B),

implying that DH-DFC also decreases the required feedback. The

MSE loss also decreases (Figure 3C), hence DH-DFC also learns by

minimizing an implicit error. Finally, we show that the latency to

reach the target is also reduced (see Figure 3D), implying that the

latency-reduction nature of temporally asymmetric learning rules

(Masquelier et al., 2009; Vilimelis Aceituno et al., 2020) is reflected

in our framework.

In addition, we experimentally calculate the similarity of the

weight updates arising from different learning rules (Figure 4). We

find that both the DFC and the BP updates are strongly positively

correlated with DH-DFC, with coefficients of determination of

0.804 and 0.966, respectively.

Finally, we compare the DH-DFC weight updates with STDP

updates evaluated on spike trains, which have a positive correlation,

with a coefficient of determination of 0.008, but a very noisy

alignment due to the randomness induced by using Poisson

neurons (see Appendix, Section 5). This randomness can be

reduced by computing several parallel conversions of firing rates

to Poisson spike trains and averaging the resulting STDP updates,

although here we find that limitations in computer memory

prevent us from reaching state-of-the-art accuracies (see Appendix,

Section 5).

It is worth noting that the DFC framework we use as a baseline

is not the only model that uses feedback to train deep neural

networks. In the next section, we argue that the use of temporal

Hebbian rules is not restricted to the DFC framework, being instead

applicable to other feedback-based learning models.

2.3. Di�erential Hebbian learning applies to
other feedback-based networks

We extend our results on the single neuron framework and

DFC multilayer model and prove that DH learning works in a

general framework where some feedback is given to each neuron in

the network so that the neuron reaches its target state. In contrast to

the single neuron set-up, the DH learning rule is not equivalent to a

simple delta rule. Since the presynaptic firing rate of most synapses
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TABLE 1 MNIST classification error for BP, DFC, DH-DFC, PC, and DH-PC.

MNIST (%)

BP 1.74±0.10

DFC 1.98±0.05

DH-DFC 1.89±0.15

PC∗ 2.71±0.2

DH-PC∗ 2.69±0.15

We compare the testing accuracies reached by our training procedure (DH-DFC) with those

achieved by BP, DFC (reported in Meulemans et al., 2021b), PC, and PC with DH (DH-PC) in

the MNIST dataset. The reported values correspond to the average testing classification error

obtained from five different random seeds. ∗The PC and DH-PC are based on the code from

Tschantz (2020) without any fine-tuning.

changes in time, the DH learning rule can then be expressed as

1w ∝

∫

rpre(t)ṙpost(t)dt = rpre(T)

∫

ṙpost(t)dt−

∫

r̃pre(t)ṙpost(t)dt,

(8)

where the extra term includes the difference between the

presynaptic firing rate at time t and its target, r̃pre(t) = rpre(T) −

rpre(t).

To understand why DH learning works despite being different

from the classical dendritic-error learning rule, it is useful to

note that r̃pre(t) → 0 as learning proceeds, and, thus, this term

disappears around the convergence point of the weights. By using

an inductive argument, this can be extended to other layers (see

Appendix, Section 3.1 for a detailed derivation).

A critical point of our convergence proof is that it does

not depend on how feedback is computed. In fact, the only

requirements are that feedback somehow pushes the neurons

toward their target states. This suggests that the logic of DH

learning should also work with other feedback-based learning

models such as the original DFC (Meulemans et al., 2022a), but

also models relying on Predictive Coding (PC) (Whittington and

Bogacz, 2017; Rosenbaum, 2022), or Equilibrium Propagation

(Scellier and Bengio, 2017). For DFC, we already saw that the

weight updates align with DFC-DH and the performances are

equally comparable (Figure 4 and Table 1); we further complement

this by analytically showing that the learning rules converge to the

same network configurations after learning (see Appendix, Section

4.1). For PC, we find that using the prediction error (implemented

through error neurons) as implicit feedback leads to the same

convergence proof as in the DH-DFC (see Appendix, Section

4.2). Moreover, in simulations, we find that the performance

of PC using DH (DH-PC) is similar to that of PC and DH-

DFC (see Table 1). For Equilibrium Propagation (Scellier and

Bengio, 2017), we note that our rule is analytically equivalent

to a modified version of DH that accounts for the specific

architectural constraints as noted in the original work (see

Appendix, Section 4.2).

As we conclude that there are multiple feedback-based learning

models to which a DH learning rule generalizes, it is natural to

inquire whether the specific combination of DH-DFC has any

advantage over its predecessor. In the original studies of DFC,

Predictive Coding, and Equilibrium Propagation, the learning

rules are applied after the neural dynamics have converged to

equilibrium. Learning is then based on an error-like component

that corresponds to the difference between the activities (or

membrane potentials) before and after feedback has shaped them.

In DFC, this error is obtained by having two-compartment

neurons, while in Predictive Coding errors are accumulated

(usually as error neurons); in both cases, this raises the number

of variables from N feedforward neurons to 2N. In contrast, both

DH-DFC and Equilibrium Propagation rely on the sameN neurons

for the feedforward pass and the learning updates. However,

Equilibrium Propagation requires a symmetry of the weights and

weight updates, imposing a specific feedback architecture and an

ad-hoc learning rule. In summary, we note that the DH-DFC

is more parsimonious in the sense that it makes very simple

assumptions on the feedback and requires less complex model

architectures.

3. Discussion

Building upon previous studies, our work represents another

leap forward to understanding the different aspects of hierarchical

learning in biological networks. In the following sections, we go

through the relationship between our work and previous works on

computational and experimental neuroscience as well as limitations

and future directions.

3.1. How does our work fit into the existing
literature

A key contribution of our work is the connection between

experimentally observed learning rules and computational models

that can train deep networks. In this section, we discuss how

this work fits with (1) the electrophysiology literature on learning

rules, (2) temporal Hebbian learning rules both at the neuron

and network level, (3) Predictive Coding and the combination

of bottom-up inputs and top-down feedback, and (4) other

bioplausible deep learning models.

3.1.1. Electrophysiological observations that
agree with our model

In biological neural networks, LTP and LTD are one of the

most prevalent forms of synaptic plasticity, and various studies

have shown that LTP is induced when presynaptic spikes precede

postsynaptic ones. In the case of multiple spike pairs, this is

consistent with our model in that an increase in postsynaptic

activity would lead to LTP and a decrease in LTD. Interestingly,

recent work suggests that classical STDP-inducing protocols

might fail under physiological extracellular calcium concentrations,

suggesting that additional mechanisms might be required to act

on the intracellular calcium levels (Larkum et al., 1999; Inglebert

et al., 2020). In pyramidal neurons, intracellular calcium levels can

be modulated by backpropagating action potential-evoked calcium

(BAC) spikes that arise when apical inputs arrive shortly after basal

inputs, resulting in action potential bursts (Larkum et al., 1999).

Our model is consistent with this notion that delayed feedback into

the apical dendrite drives plasticity while basal feedforward input

does not. Future neuroscience experiments should explore if high
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FIGURE 4

Comparison of learning algorithms. We calculate the synaptic weight update in our deep network using di�erent algorithms and synaptic plasticity

rules. We compare our DH weight updates (x-axis) to the updates given by other algorithms. Weight update correlations between DH-DFC and: (A)

BP; (B) DFC; (C) and STDP. We observe a clear correlation between DH-DFC and both BP and DFC, and a significant but weaker correlation with STDP.

calcium concentrations resulting from BAC spikes and bursts are

indeed suitable to restore LTP and LTD induction when using a

classical STDP protocol (Inglebert et al., 2020).

Finally, our model requires feedback that is specific to every

neuron. Therefore, the synaptic weights to the apical dendrite have

very specific values that must be computed by some biological

mechanism. In previous work, we showed that these weights can

be learned in a bioplausible manner by an anti-Hebbian leaning

rule (Meulemans et al., 2020). In biology, anti-Hebbian learning

rules appear in disinhibitory GABAergic synapses (Lamsa et al.,

2007), suggesting that the target used for learning in our model

would be fed back into excitatory neurons through disinhibitory

circuits. This nicely relates our work to the role of coupled apical

and basal inputs in learning and the regulation of this coupling

by disinhibitory circuits (Zhang et al., 2014; Avital et al., 2019;

Williams and Holtmaat, 2019), and therefore use connectivity that

matches the requirements of our feedback-based target propagation

framework. Future theoretical investigations should continue this

line of work by looking beyond Hebbian-like learning rules and

integrating the knowledge of BAC-firing dynamics, the effects of

calcium on plasticity, and the role of disinhibitory circuits in

bioplausible models of deep learning.

3.1.2. Learning with temporal Hebbian learning
rules

Temporal Hebbian learning rules such as STDP or DH rules

have been mostly used for unsupervised learning (Gerstner et al.,

1996; Toyoizumi et al., 2005; Lazar et al., 2009; Sjöström and

Gerstner, 2010) or as an enhancement of supervised learning in

shallow networks (Diehl and Cook, 2015). In order to use these

rules in a supervised setting, they require a teaching signal, which

can be implemented either through a neuromodulator or a third-

factor learning rule (Frémaux and Gerstner, 2016). However, such

approaches do not go beyond shallow networks (Illing et al.,

2019) and, although it has been suggested that STDP or DH

could be adopted for error-driven hierarchical learning (Xie and

Seung, 1999; Hinton, 2007; Bengio et al., 2017), a suitable network

architecture and dynamics to combine time-dependent Hebbian

learning rules with deep networks has not been proposed yet

(Bengio et al., 2015). Our work fills this gap by presenting an

approach that is able to train deep hierarchies with a learning

FIGURE 5

Surprise triggers a large feedback signal that alters neuronal

activities. Across learning, the change in the post-synaptic activity

driven by the apical feedback reduces as neurons reach their target

rates. However, when the labels are randomly swapped (indicated

by the arrow in epoch 20), the apical feedback is notably increased.

Note that the label switch did not set the network to its baseline

state, because the required feedback decreased to the pre-shift

level much faster than on the first epochs.

rule that retains the time-based principles of STDP. This in turn

connects deep network optimization to latency reduction, a well-

known effect of STDP where neurons fire earlier in time every

time that an input sequence is presented (Masquelier et al., 2009;

Vilimelis Aceituno et al., 2020; Saponati and Vinck, 2021). This had

been studied only at the level of neurons but we now turned it into

a systems-level optimization process.

3.1.3. Predictive Coding and top-down feedback
Due to the close relation of our model to Predictive Coding

(PC), we next compare our approach to PC. In the PC literature,

learning decreases the amount of top-down feedback. This process

intrinsically generates expedited neuronal responses after stimulus

presentation, which are often interpreted as predictions (Friston

and Kiebel, 2009; Whittington and Bogacz, 2017; Keller and Mrsic-

Flogel, 2018). The PC framework goes beyond explanations of these
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activities by proposing neural circuits that could implement this

behavior (Rao and Ballard, 1999; Bastos et al., 2012).

However, PC as a mechanistic theory for neural circuits

requires explicit error encoding (Koch and Poggio, 1999; Rao

and Ballard, 1999; Bastos et al., 2012), a requirement which

is problematic for making valid testable predictions (Kogo and

Trengove, 2015). In contrast, our framework can exhibit a

similar reduction of top-down feedback and anticipated neuronal

responses. Still, since it is based on the target activities of neurons

rather than on errors, it does not require explicit errors to

be encoded. This shows that it is actually possible to design

neural circuits that can reproduce the relevant PC features

while representing errors implicitly with the temporal neuronal

dynamics. To illustrate this effect, in Figure 5 we plot the feedback

that modulates a deep network during training. The feedback

decreases as the model learns but, when we randomly shuffle

the labels—which can be considered a surprising response—

the feedback signal increases substantially, thereby changing the

neuronal activity in accordance with experimental observations

(Keller and Mrsic-Flogel, 2018).

3.1.4. Alternative bioplausible deep learning
models

Other bioplausible deep networks models such as Equilibrium

Propagation, dendritic-error learning, or Burst Propagation require

a learning signal to be computed either by using two separate

phases (Scellier and Bengio, 2017), distinct dendritic and somatic

compartments (Sacramento et al., 2018) or via multiplexing of

feedback and feedforward signals as bursts and single spikes

(Payeur et al., 2021), respectively. In contrast, our model encodes

supervision signals as temporal changes in postsynaptic activities,

which arrive at individual neurons via their apical dendrite with

a short time delay. Table 2 provides a comprehensive comparison

of our approach to the most recent alternative bioplausible

deep learning methods and how they relate to experimental

observations.

The relationship between temporal dynamics and bioplausible

deep learning has been explored before. This was done through

different methods, for instance: by making use of subsequent

frames, usually in an unsupervised or self-supervised setting (Illing

et al., 2020; Lotter et al., 2020); or having a combination of STDP

and reward signals (Mozafari et al., 2019; Illing et al., 2020);

or, more generally, with the so-called temporal error learning

framework (Wittenberg and Wang, 2006). Our model applies a

similar principle but with a supervised target and at the level of

neuronal dynamics.

3.2. Limitations and future work

3.2.1. Limitations
On the experimental side, our framework requires a top-down

controller to continuously compare the actual network output to

the desired one, while sending feedback to the lower hierarchies.

Although such a feedback controller can be easily realized as a

neural circuit (Meulemans et al., 2021a), it is not clear yet if the

brain employs any type of control circuit for learning. Future work

could look at whether the apical inputs going through disinhibitory

circuits correspond to feedback inputs that drive neurons to a target

activity that stabilizes the top-down feedback.

From a modeling perspective, weights from the same neuron

can be positive and negative or even transition from negative to

positive and vice-versa, which is in conflict with Dale’s law. This is

a common simplification of ANN models (Cornford et al., 2020).

Violating Dale’s law, however, can be corrected using a bias in the

postsynaptic activity to turn negative weights into weak positive

weights (Kriegeskorte and Golan, 2019). Moreover, recent studies

showed that with certain network architectures and priors, Dale’s

law can be easily preserved while maintaining the same functional

network properties (Cornford et al., 2020).

Another limitation of our work is that we use DH instead

of STDP to train deep networks. This is due to the randomness

induced by our implementation of spiking neurons using a Poisson

model, which implicitly imposes noisy learning updates. Further

work could use leaky integrate-and-fire neurons, which can reduce

the effects of randomness. This would require computing feedback

in an event-based network, which is a currently active area of

research.

At the computational level, our method requires a long

time to be simulated because the controller works by updating

the neural activity in small incremental steps, requiring as

many as a hundred forward passes for each sample, which is

much more than off-the-shelf learning algorithms but in line

with previous works using feedback mechanisms (Scellier and

Bengio, 2017; Rosenbaum, 2022). Similarly to the previous point,

the use of an event-based network would greatly reduce the

computational costs of learning by reducing the control cost only

to relevant events.

3.2.2. Future work
After learning, our model predicts an expedited onset of

pyramidal neuron activity upon feedforward input (Figure 3)

that is inversely correlated with the top-down feedback to alter

neuronal activity. A related cortical micro-circuit hypothesis is

that local inhibitory microcircuits projecting onto apical dendrites

control the neuron’s excitability and that their control strength

reduces during learning. In an experimental setting, this temporal

shift as well as the feedback strength attenuation could be

tested using simultaneous in vivo 2-photon calcium imaging

of excitatory and inhibitory populations (as in Han et al.,

2019) combined with a plasticity-inducing whisker stimulation

paradigm.

From a computational perspective, follow-up studies should go

beyond modeling phenomenological learning rules such as STDP

into hierarchical networks. For example, one direction could be

to develop a more detailed mechanistic sub-cellular model that

accounts for the coupling of intracellular voltage and calcium

dynamics that are being differently modulated by inputs to apical

and somatic synapses. Such sub-cellular mechanistic models might

also include multiplicative effects of the apical input (Larkum

et al., 2004) as well as apical-induced bursting (Segal, 2018) to

further close the gap between the correlation-based models used

in computational neuroscience and experimental observations

showing, for example, the diverse intracellular effects of calcium on
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TABLE 2 Comparison of diverse bioplausible hierarchical learning methods. For further details on these methods: Equilibrium Propagation (Scellier and

Bengio, 2017), Predictive Coding (Whittington and Bogacz, 2017), Dendritic-error (Sacramento et al., 2018), Burst Propagation (Payeur et al., 2021).

Implicit error Explicit error

Method Temporal
Hebbian

Equilibrium
Propagation

Predictive
Coding

Dendritic-error Burst
Propagation

Error type Control Contrastive Prediction Prediction Multiplexed

Phases/Compartments 1/1 2/1 1/2 1/2 1/2

Network connectivity Unconstrained Unconstrained Constrained Constrained Constrained

Weight symmetry Not required Required Arises with learning Not required Arises with learning

Feedback magnitude Strong feedback Weak nudging Weak error Weak nudging Weak error

Error encoding Change in

firing rate

Difference in

neuronal activity

Activity of

error neurons

Difference apical/

somatic activity

Ratio bursts/

single spikes

Update rule Temporal Hebbian Contrastive Hebbian Hebbian Apical/somatic error Burst rate

Update timing Continuous Timed Timed Timed Continuous

MNIST performance (%) ∼1.9 ∼2–3 ∼1.7–1.8 ∼2.0 ∼1.1

Possible link to

observations in

neuroscience

Apical inputs affect

postsynaptic activity,

increased feedback

activity

upon new stimuli

Varying neural

responses for

different behaviors

Increased neural

activity upon new

stimuli

Apical inputs

affect activity

and plasticity

Apical inputs

affect burst rate

and plasticity

Bioplausibility +++ + ++ ++ +++

Note that the MNIST performance comparison does not take into account different model sizes. The +++ symbol corresponds to high biological plausibility, the ++ symbol corresponds to

medium biological plausibility, and symbol corresponds the + to low biological plausibility.

learning and neuronal activity (Larkum et al., 1999, 2007; Larkum,

2013). Another logical future step would be to develop more

explicit theoretical links between PC and our temporal Hebbian

framework. This would require applying it to other problems,

such as detecting deviations from learned time series (Garrido

et al., 2009) or unsupervised image representations (Rao and

Ballard, 1999) and comparing the reduction of feedback with the

minimization of prediction errors or free energy (Friston and

Kiebel, 2009). Showing such conceptual links would pave the way

to design more cortical-like circuits that explain Predictive Coding

features but avoid the problems emerging from explicit error

neurons (Kogo and Trengove, 2015).

Our framework can be leveraged to build the theory in

spiking neural networks, where the processing of time-centered

losses is still in its infancy. For example, it would be interesting

to see how the notion of control cost or latency to target

response interplay with information theory metrics, which have

been shown to be useful for continuous learning or few-shot

learning (Yang et al., 2022b,c). Similarly, if using the multi-

compartment neuron formulation of our model, one could include

other relevant features such as working memory (Yang et al.,

2022a).

Finally, the simplicity and locality of the model we propose

makes it well-suited for on-chip event-based learning applications.

This would require integrating a simple PI controller in a

neuromorphic processor and further theoretical work on

implementing our learning set-up with leaky integrate-and-fire

neurons. Given that STDP can induce energy-efficient

representations (Vilimelis Aceituno et al., 2020), it is likely

that training with STDP might even further improve the energy

efficiency of neuromorphic devices. In addition, the fact that our

framework can learn all weights in an online manner (Meulemans

et al., 2021b) implies that a perfect model of the processor

architecture is not required, which is a key problem when training

neuromorphic devices off-line due to the so-called device mismatch

(Pelgrom et al., 1989; Binas et al., 2016).

4. Conclusions

With this work, we present a new hierarchical learning

framework in which the temporal order of neuronal signals is

leveraged to encode top-down error signals. This reformulation

of the error allows us to avoid unobserved learning rules

while at the same time being consistent with classical ideas of

Predictive Coding. Our work is a crucial step toward a more

detailed understanding of how temporal Hebbian and STDP

learning can be used for supervised learning in multilayer neural

networks.
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