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Abstract
The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a
major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have
been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and
often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration
from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic
forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-
specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible
form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity
mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously
learned representations.We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark
and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect
to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight
Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea
of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.

Keywords Continual learning · Bio-inspired · Sparsity · Feedback · Lateral inhibition · Activity regularization

1 Introduction

The mammalian brain has an astonishing ability to continu-
ally form new memories while preserving previous ones. In
contrast, artificial neural networks are prone to catastrophic
forgetting when trained on a sequence of tasks or datasets
(McCloskey and Cohen 1989). This is true even if the tasks
are very similar to each other and are likely to benefit from
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similar features. For example, learning to recognize differ-
ent pairs of hand-written digits in sequence is notoriously
difficult for artificial neural networks trained with backprop-
agation (Van de Ven and Tolias 2019).

For multi-layer artificial neural networks, a range of con-
tinual learning (CL) approaches have been devised that
include modifications to the network architecture, loss func-
tion, or the implicit or explicit storage of previous task data
(Van deVen and Tolias 2019). Usually, thesemethods require
external information about a task switch. This is in stark con-
trast to natural environments, where tasks are usually notwell
defined and need to be inferred from context.

To address the CL problem, brain-inspired approaches
have been developed (Kudithipudi et al. 2022; Parisi et al.
2019). For example, French (1991) pointed out that the
problem of catastrophic forgetting might not be intrinsic to
biological neural networks, but is rather an effect of dis-
tributed and overlapping task representations that emerge
when using the standard backpropagation (BP) algorithm.
In line with this idea, it has been suggested that biological
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networksmight avoid catastrophic forgetting by representing
information through a sparse, but task-specific subset of neu-
rons and synapses to which learning is restricted (Lin et al.
2014;Manneschi et al. 2021; French1991).Other approaches
relax the idea of restricting learning to sub-populations to the
more general notion of learning within restricted subspaces
(Duncker et al. 2020).

In this work, we exploit the idea of restricting learning to
task-specific, sparse representations with the goal to derive a
novel, bio-inspired task-free CLmethod. In line with the per-
vasive recurrence observed in the visual cortex (van Bergen
andKriegeskorte 2020), we argue that a task-specific sparsity
mechanism should not only incorporate feedforward infor-
mation (bottom-up) coming from lower hierarchical layers
but also error feedback information coming fromhigher areas
(top-down). To render both forms of information usable for
such informed sparsity, we adopt Deep Feedback Control
(DFC), a bio-plausible deep learning framework in which
every neuron integrates inputs from the previous layer, as
well as top-down error feedback during learning (Meule-
mans et al. 2022). To enforce sparsity, we combine DFCwith
a winner-take-all (WTA) mechanism and restrict learning of
the feedforward weights to active neurons. To stabilize and
protect previously learned representations, we further intro-
duce intra-layer recurrent weights that are updated through
a Hebbian-type learning rule. In the following, we term this
new, combined method sparse-recurrent DFC.

To explain the basics of our algorithm, we first present
related work in Sect. 2. Then, in Sect. 3, we provide imple-
mentation details on how we modified the DFC learning
dynamics to integrate the twomajor factors required forCL—
sparsity and intra-layer recurrent connections. In Sect. 4, we
show that the introduction of these additional bio-plausible
elements helps to stabilize learning and to reduce forgetting
by regularizing neural activity. We compare our approach
with other established regularization-based CL methods and
show that sparse-recurrent DFC performs comparably well
despite completely lacking information on task boundaries.
Finally, we analyse the resulting task representations in order
to better understand the mechanisms behind the observed
improvement in CL performance.

2 Background

2.1 Computational strategies for continual learning

To overcome catastrophic forgetting, researchers developed
a variety of different strategies that can roughly be classified
into three categories:

(1) Replay methods rely on implicitly or explicitly storing
and revisiting previous data while learning new tasks.

Fig. 1 a Schematic of the sparse-recurrent DFC network and its top-
down feedback controller. The ri (t) values denote neuron activation
vectors for layer i , whereas r∗

L represents the desired network output.
Learning is based on a dynamic process during which neurons inte-
grate feedforward and feedback signals until the network converges
to a sparse target representation minimizing the loss. Weight updates
(dashed lines) of forward weights Wi are restricted to neurons that are
active at convergence (red). Lateral recurrent weights Ri into inactive
neurons are updated via a Hebbian-like learning rule. The Qi values
denote feedbackweights, and u(t) refers to the control signal.bDetailed
zoom into layer i showing one active (pink) and one suppressed (grey)
neuron. vffi , v

fb
i , and vi represent feedforward, feedback and combined

activity, respectively. The solid lines represent weights that will not be
changed, whereas dashed lines show weights which will be updated

This can be accomplished by storing small subsets of
previously seen data in a memory buffer, or by train-
ing a generative model (Shin et al. 2017). However, we
do not consider data replay in this work, since we are
interested in methods based on bio-plausible plasticity,
without relying on external data storage.

(2) Regularization methods constrain learning to preserve
parameters that are important for previous tasks, usu-
ally by adding specialized loss terms. Elastic Weight
Consolidation (EWC) and Synaptic Intelligence (SI) are
commonly used representatives of this family, which we
adopt as comparison benchmarks. In EWC (Kirkpatrick
et al. 2017), after the network converges on a task, the
Fisher information of the first task’s loss is computed
through a sampling mechanism. The Fisher term con-
tains information on parameter importance relative to the
first loss and is added as a regularization term to the loss
for the following task. Synaptic Intelligence (Zenke et al.
2017) works through a similar mechanism, but parameter
importance is estimated online based on howmuch of the
decrease in loss can be attributed to the variation of each
given parameter. In both cases, the regularization term is
added to the loss at the end of each task, and information
on task boundaries is therefore required.

(3) Architectural methods are based on structural changes
such as freezing weights, or adding and removing neu-
rons (Rusu et al. 2016). Alternatively, neurons can be
dynamically gated based on context (Masse et al. 2018;
von Oswald et al. 2020). Context, however, is usually
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externally provided rather than inferred by the network
itself, which is a strong assumption that may not always
hold for real-world scenarios. In another approach, a
dedicated system, inspired by the role of the prefrontal
cortex, is used to detect contextual information instead
(Zeng et al. 2019). In thiswork,we adopt a similar gating-
based approach, in which, conversely, gating is provided
by recurrent activity independently of external task infor-
mation.

2.2 Continual learning in the brain

Although CL in the brain is not well understood, it is likely
that various mechanisms are at play simultaneously, with
some being loosely connected to the three CL strategies
described above (Kudithipudi et al. 2022).

In neuroscience, the trade-off between fast learning and
slow forgetting is known as the stability-plasticity dilemma.
To avoid this issue, the interaction between a more plastic
system, the hippocampus, and a more stable system, the neo-
cortex, has been suggested as a long-term memory storage
mechanism, akin to a data replay strategy (van de Ven et al.
2020). On the other hand, biological networks might control
the stability/plasticity of individual synapses through mech-
anisms collectively referred to as metaplasticity. Through
metaplasticity, synapses that are particularly important for
solving previously learned tasks are left unaltered when
learning new tasks, while less relevant synapses are made
available to store new information, analogously to certain
regularization-based approaches in CL (Jedlicka et al. 2022).

Next,neurogenesis, the birth of newneurons, is sometimes
considered equivalent to architectural approaches that grad-
ually grow the network. However, neurogenesis is believed
to be limited to very specific brain areas, with small numbers
of new neurons, and it is unclear whether it occurs in adult
humans. It is therefore contested whether neurogenesis plays
a role in CL (Parisi et al. 2018).

Finally, animal brains heavily rely on context to flexibly
switch between tasks and to direct learning to task-specific
neurons and synapses. For example, previous studies have
shown that afferents of the olfactory nucleus in rats provide
contextual input from other brain areas, thereby enabling
dynamic and flexible task learning (Levinson et al. 2020).
This not only enables context-specific gating of neuronal
responses to the same stimulus for different environments or
tasks but it also facilitates forward-generalization. Similarly,
the release of specific neuromodulators (e.g. dopamine) has
been linked to the gating of activity and to learning based on
context (Kudithipudi et al. 2022). Overall, it is likely that in
biological networks the modulation of neuronal activities,

either through hierarchical top-down feedback or specific
neuromodulators, directs learning to the most salient aspects
of the task, while protecting older memories that are irrele-
vant in the current context.

2.3 Task-free continual learning

Van de Ven and Tolias (2019) defined three CL scenarios
for which training is organized sequentially on each task and
performance is evaluated as the average accuracy on all pre-
viously learned tasks:

(1) in task-incremental learning (task-IL), the task ID is
available during training and at test time;

(2) in domain-IL, the task ID is available during training but
not at test time;

(3) in class-IL, the task ID is available during training, but
at test time the model must report the task ID alongside
solving the task.

In all these scenarios, however, informationon task bound-
aries is provided during training, i.e. the model knows when
training on one task i ends and training on a new task i + 1
begins. Most CL strategies need this information to update
the loss or the network structure in preparation for the new
task. However, such discrete changes in the loss or network
structure do not seem biologically plausible. Therefore, in
this paper, we focus on domain-IL, and on the more chal-
lenging class-IL, but in a setting where task information is
entirely omitted during both training testing.

This so-called task-free form of continual learning is gen-
erally less studied, although a few examples have appeared
in recent years. The majority of these follow a data storage
and replay paradigm (Aljundi et al. 2019b; Wang et al. 2022;
Rao et al. 2019), which we do not consider in this work.
Lee et al. (2020) adopt an architectural approach, based on
an expanding set of experts which, in turn, deal with new
tasks. Among regularization-basedmethods, Laborieux et al.
(2021) propose a metaplasticity-inspired mechanism, but so
far limited to feedforward, binary networks. Aljundi et al.
(2019a) circumvent the problemof task boundaries byheuris-
tically detecting plateaus in the evolution of the loss, which
signal the end of learning for a task, and use a mixed replay
and regularization strategy. Finally, Pourcel et al. (2022) mix
an architectural methodwith replay using a dynamic content-
addressable memory for online class-IL.

To clarify how our method fits into this landscape of
brain-inspired algorithms, we next provide details on our
CL approach, which combines DFC, sparsity, and recurrent
Hebbian-like connections.
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3 Activity regularization through sparsity
and recurrent gating

3.1 Deep feedback control

During training, the neuronal dynamics within the DFC
network (Meulemans et al. 2022) can be described by a differ-
ential equation that takes into account the feedforward inputs
vffi as well as the feedback control signal vfbi according to

τvv̇i (t) = −vi (t) + vffi (t) + vfbi (t)

= −vi (t) + Wiφ
(
vi−1(t)

) + Qiu(t)
(1)

where the pre-nonlinearity neuron activations in layer i at
time t are denoted by vi (t), and the incoming weights by
Wi . φ refers to the activation function, while the neuron out-
put is given by ri = φ(vi (t)). The feedback signal u(t) is
calculated by summing the integral and proportional parts
of the network output error e(t) as described by Meulemans
et al. (2022). u(t) is then fed back to each neuron of the
network via the feedback weights Qi . During learning, the
feedforward network and the feedback controller constitute
a recurrent dynamical system that converges to a stable state
(ss) at which the neuron activity vi,ss minimizes the output
error and stabilizes the feedback signal u(t). In practice, we
simulate the dynamics for a set number of iterations and uti-
lize the final activations as stable state values. The number
of iterations is chosen to be high enough such that most sim-
ulations converge.

The final neuron activations ri,ss = φ(vi,ss) are referred
to as ‘targets’ or ‘target activations’ since they represent the
values we want the network to produce without feedback. To
achieve this, the forward weights are learned by comparing
each neuron’s target activation ri,ss to its feedforward-driven
activation φ(vffi,ss) upon converging to the stable state:

�Wi = η(ri,ss − φ(vffi,ss))r
T
i−1,ss (2)

where ri−1,ss is the presynaptic, post-nonlinearity activity
with controller feedback, ri,ss is the activity of the neuron
with feedback andφ(vffi,ss) is the postsynaptic neuron activity
without feedback. In sparse-recurrent DFC, we additionally
centre each weight update to have zero mean before applying
it. This is done in order to prevent a small group of neu-
rons to be more excitable and dominate the winner-take-all
mechanism described in the next subsection. The feedback
weights Qi can be learned (Meulemans et al. 2021, 2022),
but we simplify the learning of the feedback pathway and
re-initialize Qi as the Jacobian of the loss with respect to the
neuron activations for every data point.

Theupdate rule fromEq.2 implements a learningparadigm
where weight updates are determined by neural activity. This

opens the possibility of regularizing weight updates indi-
rectly by modulating neural activity. We will refer to this
strategy as activity regularization. In the next sections, we
describe how activity regularization (e.g. sparsity and recur-
rent gating) can be utilized to reduce interfering weight
updates between representations of different inputs belong-
ing to different tasks.

3.2 Dynamic sparsity

To gradually modulate the network activations towards
sparse, non-overlapping representations, we add a winner-
take-all mechanism on top of the existing DFC network. At
each time step t , we set a fraction si (t) of neurons to be zero.
si (t) is initialized to zero at t = 0 and incrementally grows
over time until it reaches the desired sparsity for the stable
state si,ss, which is a hyperparameter fixed for each layer i .
We refer to these hyperparameters as sparsity levels. As long
as different inputs to the network lead to sufficiently different
activation profiles, this technique should lead to a reduction
in overlap between active populations pertaining to different
data points. As a result, interference during learning should
be reduced by only updating the weights of active popula-
tions.

However, the network cannot learn to suppress specific
neurons because forward connections to inactivated neurons
are frozen. This is an issue because, while we aim to decrease
overlap between representations of different classes, inputs
belonging to the same class should be represented similarly.
WTA sparsity based on feedforward and feedback activity
alone does not ensure this. Our intuition is that, if neurons
keep dropping in and out of active populations during train-
ing, no consistent representations can be learned, leading to
forgetting. To address this problem, we introduce an addi-
tional set of connections with the aim of learning which
neurons are allowed to fire together, and which neurons are
mutually exclusive. This way, we provide a way for the net-
work to stabilize and protect the neuron populations that
together constitute specific representations.

3.3 Gating neuron activity through lateral recurrent
connections

We stabilize neuron populations involved in learned rep-
resentations by introducing lateral recurrent connections.
Because we want to strongly influence which neurons are
active, we implement lateral connections with a gating effect
thatmultiplies activations by a factor between 0 and 1, similar
to ‘forget’ gates used in LSTMs (Hochreiter and Schmidhu-
ber 1997). We then calculate the neuron feedforward activity
before the nonlinearity as

vffi (t) = Wiφ (vi−1(t)) � σ (Ri |ri (t)|) (3)
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where Ri refers to the recurrent weight matrix in the i-th
layer, σ to the sigmoid function, and φ to the same activa-
tion function as used in Eq.1. After applying the effect of
the recurrent gating, we re-scale the population activity to
have the same overall magnitude as before applying the gat-
ing. We thus only change the distribution, but not the total
level of activity. At convergence, we learn the recurrent gat-
ing weights according to a rule inspired by the feedforward
updates from Eq.2

�Ri = η(|ri,ss| − |φ(vffi,ss)|)|ri,ss|T (4)

where ri,ss are the target activations of the presynaptic neu-
rons in the same layer. Because our multiplicative gating
mechanism affects the magnitude, but not the sign of the
activity, we render this inhibition to depend on the magni-
tude of presynaptic activity.We therefore use absolute values
of activity in both the dynamics (Eq.3) and the update rule
(Eq.4). Like forwardweight updates, we normalize recurrent
weight updates to zero mean. In contrast to the feedforward
weights, however, we only update incoming weights of inac-
tivated neurons (i.e. neurons with activity set to zero by the
winner-take-all sparsity mechanism). This lets us simplify
the above equation to a Hebbian-like update rule for sup-
pressed neurons:

�Ri = −η|φ(vffi,ss)||ri,ss|T . (5)

As a result, we only update incoming recurrent weights
for inactive neurons within the target representation, while
for active neurons, we only update the incoming feedfor-
wardweights. Figure 1 (dashed lines) summarizes the weight
updates. As in standard DFC, we use a simple feedforward
pass during test time, for which neither top-down feedback
nor lateral recurrent effects are taken into account. Therefore,
the number of parameters of the trained model is equivalent
to a conventional feedforward network with the same num-
ber of neurons (see “Appendix A.3” for a further discussion
on model complexity).

Please note that gating through lateral connections, while
crucially influencing the WTA selection of the active neuron
population bymodulating neuron activity, does not determine
the level of sparsity. WTA sparsity and lateral connections
are interconnected, but distinct mechanisms.

4 Experiments

To test the CL capabilities of our approach, we train sparse-
recurrent DFC on the split-MNIST dataset, according to the
domain-IL and class-IL paradigms (Van de Ven and Tolias
2019). Split-MNIST is a simple computer vision CL bench-
mark in which five pairs of consecutive digits are presented

as a sequence of individual supervised learning tasks. In
domain-IL, all tasks involve predicting the parity (even/odd)
of the input digit, meaning that the output labels stay the
same across tasks, but the input data changes. In class-IL,
a different class has to be predicted for every digit, so that,
across tasks, both the input digits and the class labels change.

4.1 Performance

To establish whether sparse-recurrent DFC actually succeeds
at CL, we compare its performance against other learn-
ing algorithms, namely Synaptic Intelligence (SI), Elastic
WeightConsolidation (EWC), aswell as standardBPas base-
line. Previous studies evaluated models at a fixed learning
rate (LR) for a fixed number of epochs (Kirkpatrick et al.
2017; Van de Ven and Tolias 2019), however, we consider
this problematic. Both the LR and the number of epochs can
be seen as indicators for how much a network learns, thus
pointing to an inherent trade-off between learning the cur-
rent task well and forgetting previous tasks. Less learning
generally leads to less forgetting, while at the same time not
allowing the training to converge on the current task. Com-
paring CL algorithms at a single LR for a fixed number of
training samples is problematic for two reasons. First, it does
not account for different (model-specific) optimal amounts of
training. Second, it fails to capture how robust a CL approach
is to more learning, beyond its optimum LR and number of
training samples per task. To overcome this issue, we evalu-
ate learning algorithms in two different scenarios. In the first
scenario we fix the number of epochs and vary the LR. In the
second scenario we fix the LR and vary the training accuracy
that we expect on the current task, before training on the next
task, which results in different numbers of batches trained on
for different models on different tasks. In both scenarios, we
cover a wide spectrum between minimizing forgetting, and
optimizing the current task.

4.1.1 Learning rate performance evaluation

Figure 2a and 2b shows performance for a fixed number of
training samples across a range of LRs for domain-IL and
class-IL, respectively. The initial rise of performance fol-
lowed by a decay can be explained by the fact that very small
LRs (left of the peak) generally prevent sufficient learning
while high LRs (right of peak) lead to catastrophic forgetting.
These CL performance profiles confirm our initial intuition
that choosing a single LR to compare CLmethodsmight lead
to overestimating one method over another. We regard good
performance in this setting as a function of both peak accu-
racy and the degree towhich accuracy canbemaintained once
the optimal LR is reached. In domain-IL, sparse-recurrent
DFC significantly outperforms BP and achieves a similar
performance profile to EWC. Compared to SI, our approach
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Fig. 2 Performance evaluation of split-MNIST for BP, EWC, SI,
and DFC-sparse-rec for domain-IL (left column) and class-IL (right
column). Error bars represent standard deviations using five random
seeds. a Split-MNIST accuracy at the end of training in the domain-IL
paradigm on the whole test set (all digits) for a range of learning rates
(LRs). The number of training iterations is fixed at four epochs. Stars
indicate average performance on an accuracy-maximizing window of
six LRs. b Accuracy of models at the end of training in the class-IL
paradigm on the whole test set for every LR. Stars indicate average

performance on an accuracy-maximizing window of six LRs. c Accu-
racy of models at the end of training in the domain-IL paradigm on the
whole test set for a range of minimum early stop accuracies. The LR
is fixed, and training is stopped at every task once the train accuracy
for the current batch reaches the given minimum accuracy value. The
maximal number of epochs trained for is 10. d Accuracy of models at
end of training in the class-IL paradigm on the whole test set for a range
of minimum early stop accuracies

performs worse in terms of peak accuracy, but maintains
accuracy over 70% for a wider range of LRs. In class-IL,
sparse-recurrent DFC outperforms all other methods both in
peak accuracy and average accuracy.

4.1.2 Early stop performance evaluation

Figures 2c and 2d show performance for a fixed LR across a
range of early stop accuracies for domain-IL and class-IL,
respectively. In domain-IL, sparse-recurrent DFC outper-
forms BP for almost all minimum accuracies. However, it is
most competitivewhenwe train each task to convergence. For
training up to very high accuracies, sparse-recurrent DFC is
comparable to both EWC and SI. In class-IL sparse-recurrent
DFC outperforms all other CL algorithms for the majority of
accuracies.

Overall, we conclude that sparse-recurrent DFC repre-
sents a competitive CL method that shows a robust per-
formance independent of the amount of learning on each
individual task. In the next section, we investigate in more
detail the effects on accuracy with respect to the main com-

ponents of our method: feedback, sparsity and intra-layer
recurrency.

4.2 Integrating feedback signals facilitates CL

A major difference between standard BP and DFC is that in
DFC, the activity of each neuron during training reflects feed-
forward as well as feedback (error) signals coming from the
top-down controller. As a result, target representations ri,ss
are specific to both input and output, with data points exhibit-
ing larger overlaps in active neuron populations if these have
similar features or the same label. Figure 3a shows that CL
performance is improved across a wide range of LRs if we
take into account feedback signalswhen selecting the remain-
ing active population within the sparse target. Although the
combination of equal parts feedforward and feedback activ-
ity yields the best results overall, feedback activity alone
achieves high accuracy for LR = 1e − 3.5. We hypothesize
that low LRs lead to less training of forward weights, render-
ing input selectivity less useful. Thus, it may be beneficial for
the network to rely solely on feedback when determining the
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active population. This is consistent with our idea that incor-
porating feedback signals generally facilitates the sparsity
selection process, allowing the learning ofmore task-specific
representations.

4.3 Sparsity and recurrent gating are required for CL

We next investigate whether both sparsity and intra-layer
recurrence in the DFC framework are crucial for CL. We
compare the accuracy of sparse-recurrent DFC against stan-
dard DFC, sparse DFC and recurrent DFC. As opposed to
sparse-recurrent DFC, recurrent DFC has no inactivated neu-
rons to constrain the recurrent weight updates to. We thus
apply the recurrent weight update rule from Eq.4 to all neu-
rons. Figure 3b shows that neither sparsity nor recurrent
gating alone significantly alters CL performance across LRs.
However, the combination of the two leads to better perfor-
mance across a wide range of LRs.

Figure3c shows accuracy as a function of the sparsity
parameters si,ss. For the first hidden layer, a small but nonzero
sparsity level yields the best performance, while for the
second hidden layer, higher sparsity levels work best. This
dependence on layer depth is expected, because the early lay-
ers of multi-layer neural networks encode low-level features
common to multiple classes and class-selectivity is a disad-
vantage for these neurons (Morcos et al. 2018),while the later
layers encode higher-level features which are more specific
to individual classes (Zeiler and Fergus 2014; Mahendran
and Vedaldi 2016).

4.4 Aligning sparse, separated representations
across tasks facilitates domain-IL

Next, we test whether the combination of sparsity and
recurrent gating facilitates CL by reducing representational
overlap, in a domain-IL setting. We compute the reduction
in overlap (i.e. separation) between last hidden layer rep-
resentations of all pairs of digits, at the end of training.
We distinguish between intra-label separation (MNIST digits
with the same parity label) and inter-label separation (digits
with different parity labels), as shown in Fig. 3f. We compute
representational separation between digits as

s(d1, d2) = 1 − ad1l · ad2l
‖ad1l ‖‖ad2l ‖; adl =

n∑

j=1

|rdl, j | (6)

where rdl, j represents the activations in layer l elicited by the
j’th sample of digit d. Figure 3d shows the averages of inter-
and intra-label representational separations forDFCvariants.
Interestingly, sparse DFC shows high representational sep-
aration, but does not yield significantly higher accuracies
compared to standard DFC or BP. This suggests that overall

increases in representational separation alone do not account
for performance improvements that we observe in Fig. 3b.

To better understand this result, we next devise a new
measure of separation, which we term normalized inter-
label separation and that is defined as the average difference
between inter-label separation and intra-label separation.
Figure 3e shows this separation metric over a wide range of
LRs. For the LRs where sparse-recurrent DFC yields higher
normalized inter-label separation, we also observe better CL
performance (compare to Fig. 3b), suggesting that the rela-
tive degree of digit representational overlap can explain the
CL performance profile that we observe for sparse-recurrent
DFC. This indicates that sparse-recurrent DFC facilitates
domain-IL performance by representing even and odd digits
in two partially separated neuron populations that are reused
across tasks.As a first result, we conclude that, although spar-
sity is necessary to create non-overlapping representations,
sparsity alone is not sufficient for aligning these across tasks.
Such alignment, however, seems beneficial for domain-IL,
where several digits are represented by the same label. We
next investigate how recurrent gating helps to learn represen-
tations that are compatible across tasks.

The final hidden layer of a network has to learn represen-
tations of the input that are linearly separable by its readout
weights. One possible way to prevent catastrophic forgetting
is to ensure two things. Condition 1: The hyperplane sep-
arating representations of different labels (implemented in
the network by the readout layer) needs to stay the same,
or similar across tasks. Condition 2: Data points repre-
sented in the final hidden layer need to stay on the same
side of the classification hyperplane that was initially learned
as we train on subsequent tasks. We measure feedforward
activations φ(vffL−1) (no recurrent gating) and target acti-
vations rL,ss (including effects of controller and recurrent
gating) to test whether recurrent gating helps to achieve this.
Regarding condition 1, Fig. 4b shows that, if we classify tar-
get activations at training onset of a new task according to
the previously learned separation boundary, sparse-recurrent
DFC consistently yields higher classification accuracies than
sparse DFC. This suggests that lateral connections regular-
ize new target activations such that they better align with
previously learned task boundaries. This idea is illustrated in
Fig. 4a, showing that target activations of the second task are
separated by the same hyperplane that divides targets of the
first task. Regarding condition 2, we measure the direction
of movement of feedforward activations from the beginning
to the end of training. We next quantify how much the data
points move towards the initially learned separation bound-
ary. Figure 4c suggests that sparse-recurrent DFC reduces
the movement towards the previous decision boundary com-
pared to sparse DFC. Taken together, our results suggest that
recurrent gating helps fulfil both conditions. For more details
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Fig. 3 Necessity of sparse-recurrent DFC components and activity sep-
aration analysis for domain-IL. Error bars represent standard deviations
using five random seeds. a Split-MNIST performance when using vary-
ing ratios of feedforward and feedback activity to select the suppressed
population for different learning rates (LRs). The x-axis represents the
fraction of feedback activity used for the selection of neurons to be sup-
pressed. A value of 0means only feedforward activity (ff) is considered,
a value of 1 means only feedback (fb) is taken into consideration, and
0.5 corresponds to an equal mix of the two activities. This activity mix
is only used for selecting the active neuron population, but the activity
flowing through the neurons corresponds to the normal network activity
given by Eq.1. b Cross-LR evaluation for all DFC variants. The plot
reflects the overall performance on all split-MNIST digits at the end

of training. c Cross-LR accuracy for different combinations of hidden
layer sparsity levels. The accuracies were aggregated to single num-
bers by averaging over a contiguous window of six LRs that maximizes
average performance, and over five random seeds. d Inter- and intra-
label separations for DFC variants after all five tasks have been learned.
Intra-label separations are calculated for all digit pairs with the same
label, inter-label separations for all pairs of digits with different labels.
Results are averaged over nine LR values. eNormalized inter-label sep-
aration calculated as the difference between inter-label separation and
intra-label separation at the end of training across a range of LRs. f
Visualization of intra- and inter-label distances in the space of activity
separation

on the calculation of thesemetrics involving hyperplanes, see
“Appendix C”.

4.5 Learning within separate subspaces facilitates
class-IL

One possible strategy to address class-IL is to enforce sparse,
non-overlapping representations of different digits, thereby
preventing interfering weight updates between classes. To
test whether sparse-recurrent DFC utilizes this strategy, we
record target activities of different digits after they are first
learned and measure the representational overlap of all pairs
of digits using Eq.6. Figure5a shows that, while sparse
DFC leads to some increase in representational separation,
sparse-recurrent DFC maximizes separation across all LRs
compared to other DFC variants. These results are consis-
tent with our initial idea of reduced representational overlap
facilitating CL. Intuitively, if different neurons are used for

different tasks, weights of neurons that were important in
early tasks are less likely to be changed. Similar to domain-
IL, sparsity in class-IL can thus be seen as a necessary
condition for the formation of non-overlapping representa-
tions.

To gain a better understanding of why recurrent gating
helps to increase representational separation in class-IL, we
next analyse its effect on altering the dimensionality of tar-
gets. Figure5b shows the effective dimensionality (Roy and
Vetterli 2007) of the target activations of different tasks after
learning for recurrent DFC, sparse DFC and sparse-recurrent
DFC. The results suggest that the combination of sparsity and
recurrent gating leads to a significant decrease in effective
dimensionality of the target activations. This led us to hypoth-
esize that representations learned for a new task are less likely
to affect dimensions that were important for previous tasks.
To investigate if recurrent gating leads to a reduction in reuse
of previously learned subspaces, we compute the fraction of
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Fig. 4 Effects of recurrent gating on last hidden layer targets rL−1,ss and
feedforward activations φ(vffL−1) during learning. Error bars represent
standard deviations using five random seeds. a Schematic of task 1 and
2 representations with respect to the hyperplane (dashed line) dividing
task 1 target activations (grey) according to their label. This diagram
illustrates two things: First, the new target representations alignwith the
previously learned hyperplane in terms of label separation (supported
by b). In other words, the hyperplane that separates task 1 targets also
separates task 2 targets. Second, task 1 representations generally move

less towards the separating hyperplane as subsequent tasks are learned
(supported by c). This is represented by the arrows. b Alignment of
new task target activations with previous hyperplanes. This is measured
as the fraction of initial target representations (rL−1,ss, before learning
task i), of the new task i that are correctly separated according to the
hyperplane learned on the previous task i − 1. c Movement of feedfor-
ward activationsφ(vffL−1) of previous tasks towards the hyperplane after
learning subsequent tasks, normalized by movement in all directions

Fig. 5 Last hidden layer target activation (rL−1,ss belonging to task i ,
after learning task i) analysis for class-IL. Error bars represent stan-
dard deviations over five random seeds. a Representational separation
(Eq.6) between pairs of digits for DFC variants for a range of learn-
ing rates (LRs). b Effective dimensionality (Roy and Vetterli 2007)
of targets averaged over tasks and random seeds for DFC variants for
LR = 0.001. c Visualization of the ’unaltered dimensionality fraction’

γ measure described in “Appendix D”. The left and right ellipses repre-
sent the subspace used by the first i−1 tasks, and by task i , respectively.
γ quantifies the dimensionality of the coloured area as a fraction of the
dimensionality of the area of the left ellipse. dUnaltered dimensionality
fraction γ (described in Eq.18 from “Appendix D” and visualized in
subplot c) for DFC variants

the effective dimensionality used by previous tasks that is
left unaltered by the current task (Fig. 5c). For more details
on the calculation of this metric, see ‘Appendix D”. Fig-
ure5d validates our hypothesis that recurrent gating reduces
the fraction of dimensions that are altered by new tasks, thus
reducing the extent to which new weight updates interfere
with parameters important for previous tasks.

5 Discussion

In summary, we have presented a new, bio-inspired, task-free
CL approach that yields competitive performance compared

to other CL methods on a simple computer vision bench-
mark. To restrict learning to a reduced set of task-specific
parameters, our method (sparse-recurrent DFC) integrates
feedforward and feedback information to constrain activ-
ity to a sub-population of neurons. In addition to being
more biologically plausible, we show that including top-
down signals is beneficial for CL. Our results are consistent
with the idea that sparsity is a requirement for reducing
representational overlap, but suggest that sparsity alone is
insufficient for protecting previously learned model param-
eters. We show that intra-layer recurrent connections, when
combined with sparsity, facilitate the protection of old task
representations, leading to competitive CL performance of
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DFC on split-MNIST. For both domain- and class-IL, recur-
rent gating in combination with sparsity restricts learning
to low-dimensional subspaces. In domain-IL, the same sub-
space consisting of two separated neuron populations is
shared across tasks; in class-IL learning is restricted to mul-
tiple distinct subspaces.

Fromaneuroscience perspective, our findingsmight allow
experimental researchers to derive new hypotheses about
how the brainminimizes catastrophic forgetting. One predic-
tion of our sparse-recurrent DFC network is that intra-layer
recurrent connections are only critical during learning but
not inference, since we only use recurrence at training time.
Although this is surprising, there are data suggesting that bio-
logical brains do this as well. Van Rullen et al. (1998) argue
that, given the short response time in face recognition tasks,
neurons do not have the time to emit much more than one
spike at each processing stage. This would imply that initial
inference can happen before recurrence takes effect. Based
on our work, neuroscientists could, for example, manipulate
recurrent communication within cortical hierarchies, to test
if an animal’s ability to perform inference or to learnmultiple
tasks sequentially is affected.

From a machine learning perspective, our new method is
relevant because it is based on a novel set of working princi-
ples to achieve CL. As sparse-recurrent DFC naturally infers
non-overlapping representations and thus non-interfering
parameter updates, it does not require any task boundaries
or task information either during training or testing. While
other task-free CL methods exist and achieve competitive
performance, they are not exclusively based on specialized
weight update rules, as they use either data replay or expand-
ing architectures. The only exception we could find is limited
to binary networks (Laborieux et al. 2021). Moreover, in
future work, our approach could be combined with other
task-free CL methods (replay and non-replay-based) which
might lead to even better CL performances. Although the
current implementation of sparse-recurrent DFC is com-
putationally less efficient when compared to standard CL
algorithms running on GPUs, DFC is ideally suited for a
neuromorphic hardware implementation that might be more
energy-efficient. Finally, we want to acknowledge the lim-
itations of our experimental paradigm: MNIST is a simple
dataset, and the number of tasks is limited.While results from
additional experiments suggest that our method generalizes
to other datasets (Appendix A.1) and more tasks (Appendix
A.2), performance gains are diminished when considering a
mixed-dataset training paradigm (Appendix A.2). This sug-
gests a need for an overlap in useful features between tasks
for sparse-recurrent DFC to facilitate CL.

Overall, our work showcases the idea of adopting biolog-
ical principles of neural computation and learning to derive
new CL methods that not only perform significantly better

than BP, but also show performance comparable to existing
CL algorithms.
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Appendix A: Additional performance results

A.1 Fashion-MNIST

To assess whether performance gains achieved by sparse-
recurrent DFC generalize to other datasets, we repeated our
performance experiments on the Fashion-MNIST dataset
(Xiao et al. 2017). Due to the high similarity of certain
pairs of classes (e.g. sandal/sneaker or pullover/coat) and
big differences between others (top/sneaker), domain-IL task
performance becomes highly dependent on the order of the
classes. To approximate general CL performance, we tested
all models on the same 10 random permutations of classes,
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which were learned in the same pair-wise fashion as split-
MNIST.Averages and standard deviations are thus computed
over the 10 permutations of classes. For this performance
comparison, we retuned the regularization coefficients for
EWC and SI, but did not retune sparsity levels and recurrent
learning rate for sparse-recurrent DFC. At most, this would
give our approach a slight disadvantage.

Figure6 shows that our approach still yields performance
at least as good as EWC and SI. For domain-IL, the improve-
ments are less significant than the ones we obtained with
split-MNIST.However, the same can be said for EWCandSI.
From these results, we conclude that our approach general-
izes beyond the MNIST distribution. Moreover, not needing
to retune the hyperparameters of our model to maintain the
performance gains suggests that our approach is quite robust.
However, for a thorough assessment of robustness to different
datasets, more work has to be done.

A.2 CombiningMNIST and fashion-MNIST

To test the continual learning models on a larger number of
tasks, as well as to test their robustness to sequential learning
across different datasets, we developed the following new
continual learning task: We first train the network under con-
sideration sequentially on x pairs of MNIST digits, and then
on x pairs of fashion-MNIST pictures. We ran this experi-
ment for x = 2 and x = 4, resulting in a total of 4 and 8 tasks,
respectively. Considering both scenarios allows us to analyse
the effect of a sequence task increase (doubling of the number
of tasks) in addition to comparing performance of learning
algorithms on a new cross-dataset training paradigm. For the
same reason as discussed in Appendix A.1, we evaluate CL
performance over 10 randompermutations of class orderings.
The results are shown in Fig. 7.

In the case of 2 tasks per dataset, Fig. 7a shows that sparse-
recurrent DFC improves upon BP when it comes to accuracy
on dataset 1 after having been trained on both datasets. The
improvements are seen in the high learning regime (lowLRs),
which we would expect to see in learning methods that are
more robust against catastrophic forgetting. However, SI and
EWC showmore significant improvements in accuracy over-
all. Moreover, because sparse-recurrent DFC does not learn
dataset 2 as well as the other methods (Fig. 7b), its perfor-
mance improvements over BP on both datasets (Fig. 7c) are
low, and clearly not as good as EWC and SI.

Doubling the number of tasks in both datasets leads to a
similar situation. Figure7d shows significant and consistent
improvements of sparse-recurrent DFC over BP accuracy in
high LR regimes, although overall accuracy is lower than
that for EWC and SI. Figure7e shows that, unlike in the
case of 2 tasks per dataset, sparse-recurrent DFC generally
shows better accuracy on dataset 2 than all other methods.
Combining these results, Fig. 7f shows that sparse-recurrent

DFC yields significantly higher accuracy than BP over most
LRs, as well as similar (although still lower) accuracy as
EWC and SI.

Overall, the combination of two different datasets within
one sequence taskdiminishes performanceof sparse-recurrent
DFC relative to other learning algorithms when compared to
the case of just one dataset as seen in Sect. 4.1 and Appendix
A.1. However, the reduction in forgetting compared to BP
in high learning regimes and on average are still reliable.
We suspect that, in the case of more drastic shifts in input
distribution (as is the case when shifting from MNIST to
fashion-MNIST), explicit task-boundary information is espe-
cially useful to consolidate weights important for the first
dataset, which would give EWC and SI an advantage over
our method. Moreover, the superior single-dataset accuracy
of our method also suggests that sparse-recurrent DFC suc-
ceeds, especially in those situations where representations
learned in one task can be reused in subsequent tasks. While
this might sound obvious, the successful reuse of represen-
tations is not trivial, as is seen when looking at the CL
performance of BP.

To summarize, this experiment shows that, while CL per-
formance improvements over BP can be maintained for both
cross-dataset learning, as well as an increase in the sequence
task length, it also points to a limit of our method: A certain
overlap in terms of useful features between tasks may be a
prerequisite for our method to protect against forgetting. To
make it more resistant against more drastic changes in input
distributions, adaptations may be necessary. In any case, we
believe that requiring different tasks to benefit from simi-
lar features is not an artificial limitation, as biological brains
are likely to reuse common features of the natural environ-
ment (e.g. edges, textures,...) when learning different tasks.
While MNIST and fashion-MNIST are both visual, MNIST
is most likely too simple and idiosyncratic to learn repre-
sentations that will also be useful for transfer learning on
fashion-MNIST.

A.3 Role of model complexity

It might be argued that comparing sparse-recurrent DFC to
other models with the same number of neurons is unfair due
to the added complexity of lateral and feedback connections.
However, this should not be a concern, since the additional
connections of sparse-recurrent DFC are only in use during
training. For testing, we only use feedforward weights. In
other words, after training, recurrent and feedback weights
are “discarded” and ourmodel has the exact same complexity
as models trained with BP, EWC or SI. Moreover, the notion
that additional parameters alone cannot account for perfor-
mance improvements is also supported by Fig. 3b showing
that lateral connections alone do not produce gains in accu-
racy.
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Fig. 6 Performance evaluation of fashion-MNIST for BP, EWC, SI,
and DFC-sparse-rec for domain-IL (left column) and class-IL (right
column). Error bars represent standard deviations using ten different
permutations of the class ordering. a Fashion-MNIST accuracy at the
end of training in the domain-IL paradigm on the whole test set (all
classes) for a range of learning rates (LRs). The number of training iter-
ations is fixed at four epochs. Stars indicate average performance on an
accuracy-maximizing window of six LRs. b Accuracy of models at the
end of training in the class-IL paradigm on the whole test set for every

LR. Stars indicate average performance on an accuracy-maximizing
window of six LRs. c Accuracy of models at the end of training in the
domain-IL paradigm on the whole test set for a range of minimum early
stop accuracies. The LR is fixed, and training is stopped at every task
once the train accuracy for the current batch reaches the given mini-
mum accuracy value. The maximal number of epochs trained for is 10.
dAccuracy of models at end of training in the class-IL paradigm on the
whole test set for a range of minimum early stop accuracies

Regardless, to ascertain that our improvements in CL
performance cannot simply be matched by an increase in
model complexity, we compared the performance of sparse-
recurrent DFC to a bigger BP-trained network, as well as
a bigger winner-take-all DFC model (DFC-sparse). Equa-
tion7 shows how the number of parameters in a feedforward
network in our setting can be computed as a function of
the number of units per hidden layer x . The first, second,
and third term represent weights and biases of the first hid-
den layer, second hidden layer and output layer, respectively.
Equation8 shows how the number of parameters in our recur-
rent network (including feedback and lateral connections)
can be computed. For this, we add the lateral connections in
the second term and the feedback connections in the third
term.

nff(x) = (784x + x) + (x2 + x) + (2x + 2) (7)

nrec(x) = nff(x) + 2x2 + 2x (8)

To compare our sparse-recurrent DFC model, with 20
units per hidden layer, against a feedforward networks with

at least as many parameters during training, we need to find
x such that nff(x) > nrec(20), which is already achieved by
setting x = 21. Unsurprisingly, this will lead to no signifi-
cant performance improvement compared to x = 20, so to
show the effect of increased model complexity for BP, we
will use x = 30. Figure8a shows how sparse-recurrent DFC
compares to the bigger BP network, as well as the default
BP network for reference. The same is shown in Fig. 8b for
DFC-sparse.

We can see that, while the increased size does improve
performance somewhat for low LRs, accuracy decreases at
high LRs.Overall, changes in average performance are negli-
gible and the gains in accuracy achieved by DFC-sparse-rec
cannot be attributed to increased model complexity during
training.

A.4 Accuracy vs. tasks learned

In Sect. 4.1, we evaluate the performance of models on split-
MNIST by recording the test accuracies after training on all
tasks. To analyse how cumulative performance develops as
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Fig. 7 Performance evaluation of DFC-sparse-rec, BP, EWC, SI on
mixed dataset consisting of pairs of MNIST digits and pairs fashion-
MNIST pictures. MNIST tasks are presented first as dataset 1, and
fashion-MNIST tasks are presented subsequently as dataset 2. Perfor-
mance is evaluated both for 2 tasks per dataset (first row), as well as 4
tasks per dataset (second row). Accuracies are evaluated at the end of
training on the whole sequence task on dataset 1 (first column), dataset
2 (second column) and the combined dataset (third column). Error bars
represent standard deviations using ten different permutations of the

class orderings. a Cross-LR test set accuracy on dataset 1 after learning
2 tasks of both datasets in sequence. b Cross-LR test set accuracy on
dataset 2 after learning 2 tasks of both datasets in sequence. c Cross-LR
test set accuracy on the combined dataset after learning 2 tasks of both
datasets in sequence. d Cross-LR test set accuracy on dataset 1 after
learning 4 tasks of both datasets in sequence. e Cross-LR test set accu-
racy on dataset 2 after learning 4 tasks of both datasets in sequence.
f Cross-LR test set accuracy on the combined dataset after learning 4
tasks of both datasets in sequence

more tasks are learned, we plot the mean accuracy of the
first i tasks after training on task i (Fig. 9). Each model was
evaluated with its optimal LR for 4 epochs. Curves that start
with low accuracies for task 1 can be explained by the fact
that choosing an LR that leads to convergence on task 1 is
not optimal for the final accuracy on all tasks. Moreover, the
increase in cumulative accuracy for task 4 in domain-IL can
be attributed to the similarity of the digit pairs 0/1 and 6/7.

Appendix B: Hyperparameters

Our approach for choosing hyperparameters in sparse-
recurrentDFC is to startwith a configuration that is optimized
to solve normalMNIST classification (non-CL) (Meulemans
et al. 2022), and to leave all existing parameters unaltered
for split-MNIST. Adding sparsity and recurrent gating intro-
duces layer-wise sparsity levels and recurrent learning rate,
respectively, as new hyperparameters. These new hyperpa-
rameters were tuned separately for domain-IL and class-IL.
For EWC and SI, we tuned the regularization coefficient.
The overarching principle here is that we only tune hyper-
parameters specifically associated with solving CL. Table

1 shows all tuned hyperparameters, as well as the activation
function (which was not tuned). Table 2 shows the remaining
hyperparameters shared by all models. Hyperparameter tun-
ingwas performedwith respect tomaximal average accuracy
over a consecutive window of 6 LRs in cross-LR evaluation.
The same hyperparameters were used for minimum accuracy
evaluation.

Appendix C Hyperplanemetrics

In Sect. 4.4 we compute two quantities that involve the use
of hyperplanes dividing datapoints into two classes, as per
the domain-IL setup (Van de Ven and Tolias 2019). In both
cases we obtain the separation hyperplane by fitting a logis-
tic regression model to a set of target activations of the last
hidden layer {rk, jL−1}k∈ti , where ti refers to a set of indices

of datapoints belonging to task i . rk, jL−1 represents the last
hidden layer target activations induced by datapoint k after
that network has been trained on task j . Let hi, j denote the
hyperplane obtained by fitting a logistic regression model to
classify {rk, jL−1}k∈ti according to the domain-IL class labels.
We use an L1 penalty for the logistic regression model to

123



Biological Cybernetics

Fig. 8 Analysis ofmodel capacities on domain-IL split-MNIST accura-
cies. a Performance of DFC-sparse-rec network (as used in our previous
experiments), the default BP network, and a bigger BP network with 30
units per hidden layer instead of 20. b Performance of DFC-sparse-rec

network (as used in our previous experiments), DFC-sparse with the
same number of neurons, and a bigger DFC-sparse network with 30
units per hidden layer instead of 20

Fig. 9 Average accuracy of first i tasks after training on i’th task. LRs were chosen for each model individually to maximize performance. All
models were trained for four epochs. a Cumulative domain-IL accuracies for first i tasks on test set. b Cumulative class-IL accuracies for first i
tasks on test set

Table 1 Model-specific
hyperparameters

DFC BP EWC SI

s1−3,ss Domain-IL 0.4,0.8,0.5 – – –

s1−3,ss Class-IL 0.2,0.8,0.0 – – –

Recurrent LR 40 – – –

Reg. coef. domain-IL – – 105 × 2−9, (103) 101, (101)

Reg. coef. class-IL – – 105 × 2−9, (103) 102, (103)

Activation function tanh relu relu relu

Except for the activation function, all of these hyperparameters were tuned for performing well on split-
MNIST in a cross-LR evaluation paradigm. Additionally, the regularization coefficients of EWC and SI were
retuned for fashion-MNIST in the same cross-LR evaluation paradigm (values in brackets). The three numbers
in the sparsity level rows correspond to the 2 hidden layers and the output layer, respectively. The effect of
sparsity in the output layer is solely to freeze weights of inactive neurons during training for wrong labels
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Table 2 Hyperparameters
shared between all used models

All models

# Hidden layers 2

Hidden layer sizes domain-IL 20,20

Hidden layer sizes combined dataset (domain-IL) 50,50

Hidden layer sizes class-IL 200,200

Learning rate (outside of LR evaluation) 0.001

Batch size 512

Epochs 4

Optimizer Adam

Forward weight initialization Xavier

encourage sparse hyperplanes, otherwise we use the default
parameters from the sci-kit learn library (Pedregosa et al.
2011).

C.1 Hyperplane alignment

Herewemeasure the extent towhich {rk,i−1
L−1 }k∈ti are correctly

separated by hi−1,i−1, that is how well a hyperplane from a
previously learned task i − 1 divides targets of new tasks i ,
before the network has been fit on the new task. If we rep-
resent classification accuracy of hi, j on {rk,uL−1}k∈tv (i , j and
u, v representing arbitrary task indices) as hi, j ({rk,uL−1}k∈tv ),
then the hyperplane alignment metric α is given by Eq.9.

α = 1

4

5∑

i=2

hi−1,i−1({rk,i−1
L−1 }k∈ti ) (9)

α values are further averaged over 5 random seeds.

C.2 Movement towards hyperplane

For this metric, we consider distances travelled of feedfor-
ward activations,whichwewould normally refer to asφ(vffi ).
But because we are running out of space for superscripts, we
will refer to r̃ k, jL−1 as the last hidden layer feedforward acti-
vations induced by datapoint k after that network has been
trained on task j . Please note, however, that hi, j is still com-
puted as before, using target activations (including controller
and recurrent effects). We quantify the distance of feedfor-
ward activations travelled from when they are first learned,
to when task 5 training has been finished, with respect to
the initially learned hyperplane. More precisely, for all task
indices i , we compute the difference of the projections of
{r̃ k,iL−1}k∈ti and {r̃ k,i−1

L−1 }k∈t5 on the normal of hi,i , which we
denote as ni,i . Let T c

i, j denote the matrix that contains as

rows all elements of {r̃ k, jL−1}k∈ti which have c as their correct
class label, where c ∈ {0, 1}. From these matrices, we can
compute the L1 distances travelled by datapoints with class

c from task i projected onto the hyperplane normal ni,i as
seen in Eq.10.

d̃ci = (−1)c · (T c
i,5 − T c

i,i )ni,i (10)

The (−1)c factor is important to ensure inverted signs of
travelled distances in the two classes. We need this because
directions towards the hyperplane for one class are directions
away from the hyperplane for the other. Because we only
want to quantify distance travelled towards the hyperplane
direction, and not away from it, we clip the distance vectors
to only have positive values.

dci = clip(d̃ci , 0,∞) (11)

Finally, we obtain the mean normalized movement towards
the hyperplane of activations from task i by dividing the
average distance travelled towards hi,i by the average abso-
lute distance travelled in any principal direction, as shown in
Eq.12.

βi = 〈dci 〉c∈{0,1}
1
2 〈|T 0,1

i,5 − T 0,1
i,i |〉 (12)

We need to divide the normalizing factor in the denomina-
tor by 2 because we are technically averaging over twice as
many directions as there are matrix entries. This is because
we consider both positive and negative directions for each
principle dimension. The βi values are averaged over tasks i
and 5 random seeds.

Appendix D: Fraction of unaltered subspace

With the unaltered subspace metric γ we attempt to approxi-
mate the idea of the fraction of dimensions used by previous
tasks that are left unaltered by the current task, as visualized
by Fig. 5c. We reuse the notation from the previous section,
where {rk, jL−1}k∈ti refers to the set of target activations rL,ss
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elicited by datapoints of task i upon learning task j . To quan-
tify the dimensionality of a set of neural activity vectors of
a given layer, we utilize the effective rank metric proposed
by Roy and Vetterli (2007). The effective rank of a matrix
A with positive singular values σ1,≥ σ2 ≥ ... ≥ σQ is cal-
culated using Shannon entropy H as shown in Eqs. 13 and
14.

pk = σk
∑Q

k=1 |σk |
(13)

erank(A) = exp(H(p1, ..., pQ)) (14)

We compute the effective rank of the matrix containing
activity vectors as rows to quantify the effective dimen-
sionality of the representations. We calculate the effective
dimensionality of previously learned tasks (up to but with-
out task i), the current task i , and the combination of previous
tasks and the current task as shown in Eqs. 15, 16, 17, respec-
tively.

dimprev(i) = erank({rk, jL−1}k∈⋃i−1
l=1 tl

) (15)

dimcurr(i) = erank(r ti ) (16)

dimcum(i) = max(erank([r t1, ..., r ti ]),
dimprev(i), dimcurr(i)) (17)

Effective rank as a function of sets of target activations
does not guaranteemonotonicity, whichmeans that the effec-
tive rank of a subset of targets can be larger than the effective
rank of the superset. To avoid invalid fractions, we guaran-
tee monotonicity between previous, current and cumulative
dimensionality by making sure dimcum is at least as big as
dimprev and dimcurr. If we subtract the cumulative dimen-
sionality from the sum of the previous and the current one,
we get the intersection of the two, i.e. the dimensionality that
is affected by the current task. To quantify the unaltered frac-
tion of previous dimensionality γ , we subtract the fraction of
the intersection divided by the previous dimensionality from
1 as shown in Eqs. 18.

γ = 1 − dimprev(i) + dimcurr(i) − dimcum(i)

dimprev(i)
(18)
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